DOI QR코드

DOI QR Code

A Study on Correlation Analysis between Aerodynamic Diameter and Optical Diameter Using Axial Flow Cyclone

축류형 사이클론을 이용한 공기역학경과 광학직경 상관관계 분석에 관한 연구

  • Eunjung Kim (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kyung-Ryeo Park (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Jieun Heo (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Churl-Hee Cho (Graduate School of energy science and technology, Chungnam National University) ;
  • Yun-Haeng Joe (Climate Change Research Division, Korea Institute of Energy Research)
  • 김은정 (한국에너지기술연구원 기후변화연구본부) ;
  • 박경려 (한국에너지기술연구원 기후변화연구본부) ;
  • 허지은 (한국에너지기술연구원 기후변화연구본부) ;
  • 조철희 (충남대학교 에너지과학기술대학원) ;
  • 조윤행 (한국에너지기술연구원 기후변화연구본부)
  • Received : 2023.10.20
  • Accepted : 2023.10.24
  • Published : 2023.12.31

Abstract

APS (Aerodynamic Particle Sizer) and OPC (Optical Particle Counter) have been widely used to real-time measurement of indoor and outdoor aerosols. The APS measures the size distribution based on an aerodynamic diameter, while the OPC uses optical diameter to measure the size distribution of aerosols. Since obtaining a size distribution based on aerodynamic diameter is important to understand aerosol characteristics, lots of researcher had been developed experimental equations which can convert optical diameter into aerodynamic diameter. However, previous studies have conducted repeated experiments on particles having a single diameter. In this study, an experimental method of converting optical diameter into aerodynamic diameter through a single experiment was presented. The collection efficiencies of an axial cyclone were measured using APS and OPC at the same time, and the correlation equation between aerodynamic diameter and optical diameter was driven through a theoretical model. Using the proposed method, the size distribution of NaCl particles measured by OPC showed a high correlation with the size distribution obtained by APS (0.93 of R-squared value). In the tests conducted on ISO A1, A2, and A4 test particles, the converted OPC size distribution tended to be similar to the APS size distribution, and for each of test particles (ISO A1, A2, and A4), the R-squared values for the APS particle size distribution were 0.75, 0.86, and 0.89, respectively.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부 및 한국산업기술평가관리원 (KEIT) 연구비 지원으로 수행하였고, 이에 감사드립니다(grant no. 20007027).

References

  1. Binnig, J., Meyer, J., and Kasper, G. (2007). Calibration of an optical particle counter to provide PM2. 5 mass for well-defined particle materials, Journal of aerosol science, 38(3), 325-332. https://doi.org/10.1016/j.jaerosci.2006.12.001
  2. Chien, C.H., Theodore, A., Wu, C.Y., Hsu, Y.M., and Birky, B. (2016). Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers, Journal of Aerosol Science, 101, 77-85. https://doi.org/10.1016/j.jaerosci.2016.05.011
  3. Duan, H., Romay, F., Syedain, Z., Liu, B.Y.H., and Naqwi, A. (2016). A new monodisperse droplet generator and its applications, In ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI.
  4. Heyder, J., and Gebhart, J. (1979). Optimization of response functions of light scattering instruments for size evaluation of aerosol particles, Applied Optics, 18(5), 705-711. https://doi.org/10.1364/AO.18.000705
  5. Heim, M., Mullins, B.J., Umhauer, H., and Kasper, G. (2008). Performance evaluation of three optical particle counters with an efficient "multimodal" calibration method, Journal of aerosol science, 39(12), 1019-1031. https://doi.org/10.1016/j.jaerosci.2008.07.006
  6. Hand, J.L., and Kreidenweis, S.M. (2002). A new method for retrieving particle refractive index and effective density from aerosol size distribution data, Aerosol Science & Technology, 36(10), 1012-1026. https://doi.org/10.1080/02786820290092276
  7. Iozia, D.L., and Leith, D. (1990). The logistic function and cyclone fractional efficiency, Aerosol Science and Technology, 12(3), 598-606. https://doi.org/10.1080/02786829008959373
  8. Kulkarni, P., Baron, P.A., and Willeke, K. (2011). Aerosol measurement: principles, techniques, and applications, John Wiley & Sons.
  9. Kim, D.-Y., Chung, H., Park, J.-H., Hyeon J.-H., and Hwang, J. (2012). Comparison Study of the TSI Aerodynamic Particle Sizer 3321, Grimm Aerosol Spectrometer 1.109 and HCT Particle Sensor 3030 for PM2.5 measurement, PARTICLE AND AEROSOL RESEARCH, 8(1), 9-15.
  10. Lapple, C.E. (1950). Gravity and centrifugal separation, American Industrial Hygiene Association Quarterly, 11(1), 40-48. https://doi.org/10.1080/00968205009344283
  11. Li, E., and Wang, Y. (1989). A new collection theory of cyclone separators, AIChE Journal, 35(4), 666-669. https://doi.org/10.1002/aic.690350419
  12. Matsoukas, T. (1994). Charge distributions in bipolar particle charging, Journal of aerosol science, 25(4), 599-609. https://doi.org/10.1016/0021-8502(94)90001-9
  13. Mitchell, J.P., and Nagel, M.W. (1999). Time-of-flight aerodynamic particle size analyzers: their use and limitations for the evaluation of medical aerosols, Journal of aerosol medicine, 12(4), 217-240. https://doi.org/10.1089/jam.1999.12.217
  14. Sang-Nourpour, N., and Olfert, J.S. (2019). Calibration of optical particle counters with an aerodynamic aerosol classifier, Journal of Aerosol Science, 138, 105452. https://doi.org/10.1016/j.jaerosci.2019.105452
  15. Volckens, J., and Peters, T.M. (2005). Counting and particle transmission efficiency of the aerodynamic particle sizer, Journal of Aerosol https://doi.org/10.1016/j.jaerosci.2005.03.009