• Title/Summary/Keyword: aerodynamic damping

Search Result 113, Processing Time 0.022 seconds

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Capsule Train Dynamic Model Development and Driving Characteristic Analysis Considering the Superconductor Electrodynamic Suspension (초전도 유도 반발식 부상특성을 고려한 캡슐트레인 동특성 해석 모델 구축 및 주행 특성 분석)

  • Lee, Jin-Ho;Lim, Jungyoul;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.38-45
    • /
    • 2020
  • A magnetically levitating capsule train, which runs inside the sub-vacuum tube, can reach ultra-fast speeds by dramatically reducing the aerodynamic drag and friction. The capsule train uses the superconductor electrodynamic suspension (SC-EDS) method for levitation. The SC-EDS method has advantages, such as a large levitation gap and free of gap control, which could reduce the infra-construction cost. On the other hand, disadvantages, such as the large variation of the levitation-guidance gap and small damping characteristics in levitation-guidance force, could degrade the running stability and ride comfort of the capsule train. In this study, a dynamic analytical model of a capsule train based on the SC-EDS was developed to analyze the running dynamic characteristics. First, as important factors in the capsule train dynamics, the levitation and guidance stiffness in the SC-EDS system were derived, which depend non-linearly on the velocity and gap variation. A 3D dynamic analysis model for capsule trains was developed based on the derived stiffness. Through the developed model, the effects of the different running speeds on the ride comfort were analyzed. The effects of a disturbance from infrastructure, such as the curve radius, tube sag, and connection joint difference, on the running stability of the capsule train, were also analyzed.

The Vibration Effect by Induced Pulsation Pressure to the Fatigue Crack of the Dampener Fitting Welding Zone (항공기용 유압 펌프의 맥동 압력에 의한 감쇄기 용접부위 균열 개선 연구)

  • Shin, Jae Hyuk;Kim, Tae Hwan;Kang, Gu Heon;Ha, Do Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.677-687
    • /
    • 2017
  • Aircraft can often be exposed to a variety of environments and vibrations such as engine, hydraulic pump, aerodynamic force. These may cause cracking and destruction of the mechanical structure and sub-components by high-cycle fatigue. The axial piston type pump which is usually applied to the aircraft hydraulic pump can be necessarily accompanied by the fluid pulsation by continuous rotation of the axial piston. The fatigue crack was identified at the dampener fitting welding zone to prevent vibration damping during the running of aircraft equipped with this type of pulsation hydraulic pump. In order to understand the root cause of this matter, fracture and component analyses were carried out and also integral type dampener fitting was applied to prevent recurrence of the crack as a subject of design improvements. Structural integrity stress analysis, fatigue analysis, qualification test and aircraft system equipped test was conducted to verify the design validity in application to integral type dampener fitting. The test results were sufficiently satisfactory with the demand lifetime of the material from the various types of test as conducted and the subject of design improvement in this study could be objectively evaluated that shall be applied to the operational aircraft.