• Title/Summary/Keyword: adversary system

Search Result 61, Processing Time 0.023 seconds

A strategic analysis of stationary radiation portal monitors and mobile detection systems in border monitoring

  • Coogan, Ryan;Marianno, Craig;Charlton, William
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.626-632
    • /
    • 2020
  • Radiation Portal Monitors (RPMs) are our primary border defense against nuclear smuggling, but are they still the best way to spend limited funds? The purpose of this research is to strategically compare RPM defense at the border with state-side mobile detectors. Limiting the problem to a comparison of two technologies, a decision-maker can prioritize how to best allocate resources, by reinforcing the border with stationary overt RPMs, or by investing in Mobile Radiation Detection Systems (MRDs) which are harder for an adversary to detect but may have other weaknesses. An abstract, symmetric network was studied to understand the impact of initial conditions on a network. An asymmetric network, loosely modeled on a state transportation system, is then examined for the technology that will maximally suppress the adversary's success rate. We conclude that MRDs, which have the advantage of discrete operation, outperform RPMs deployed to a border. We also conclude that MRDs maintain this strategic advantage if they operate with one-tenth the relative efficiency of their stationary counter-parts or better.

Trapdoor Digital Shredder: A New Technique for Improved Data Security without Cryptographic Encryption

  • Youn, Taek-Young;Jho, Nam-Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1249-1262
    • /
    • 2020
  • Along with the increase of the importance of information used in practice, adversaries tried to take valuable information in diverse ways. The simple and fundamental solution is to encrypt the whole data. Since the cost of encryption is increasing along with the size of data, the cost for securing the data is a burden to a system where the size of the data is not small. For the reason, in some applications where huge data are used for service, service providers do not use any encryption scheme for higher security, which could be a source of trouble. In this work, we introduce a new type of data securing technique named Trapdoor Digital Shredder(TDS) which disintegrates a data to multiple pieces to make it hard to re-construct the original data except the owner of the file who holds some secret keys. The main contribution of the technique is to increase the difficulty in obtaining private information even if an adversary obtains some shredded pieces. To prove the security of our scheme, we first introduce a new security model so called IND-CDA to examine the indistinguishability of shredded pieces. Then, we show that our scheme is secure under IND-CDA model, which implies that an adversary cannot distinguish a subset of shreds of a file from a set of random shreds.

Flush+Reload Cache Side-Channel Attack on Block Cipher ARIA (블록 암호 ARIA에 대한 Flush+Reload 캐시 부채널 공격)

  • Bae, Daehyeon;Hwang, Jongbae;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1207-1216
    • /
    • 2020
  • Since the server system in the cloud environments can simultaneously operate multiple OS and commonly share the memory space between users, an adversary can recover some secret information using cache side-channel attacks. In this paper, the Flush+Reload attack, a kind of cache side-channel attacks, is applied to the optimized precomputation table implementation of Korea block cipher standard ARIA. As an experimental result of attack on ARIA-128 implemented in Ubuntu environment, we show that the adversary can extract the 16 bytes last round key through Flush+Reload attack. Furthermore, the master key of ARIA can be revealed from last and first round key used in an encryption processing.

Keyed learning: An adversarial learning framework-formalization, challenges, and anomaly detection applications

  • Bergadano, Francesco
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.608-618
    • /
    • 2019
  • We propose a general framework for keyed learning, where a secret key is used as an additional input of an adversarial learning system. We also define models and formal challenges for an adversary who knows the learning algorithm and its input data but has no access to the key value. This adversarial learning framework is subsequently applied to a more specific context of anomaly detection, where the secret key finds additional practical uses and guides the entire learning and alarm-generating procedure.

Event Log Validity Analysis for Detecting Threats by Insiders in Control System

  • Kim, Jongmin;Kang, Jiwon;Lee, DongHwi
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.1
    • /
    • pp.16-21
    • /
    • 2020
  • Owing to the convergence of the communication network with the control system and public network, security threats, such as information leakage and falsification, have become possible through various routes. If we examine closely at the security type of the current control system, the operation of the security system focuses on the threats made from outside to inside, so the study on the detection system of the security threats conducted by insiders is inadequate. Thus, this study, based on "Spotting the Adversary with Windows Event Log Monitoring," published by the National Security Agency, found that event logs can be utilized for the detection and maneuver of threats conducted by insiders, by analyzing the validity of detecting insider threats to the control system with the list of important event logs.

An Analysis of the Secret Routing Algorithm for Secure Communications (안전한 통신을 위한 비밀 경로 알고리즘의 분석)

  • Yongkeun Bae;Ilyong Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.3
    • /
    • pp.105-116
    • /
    • 1997
  • Routing security is related to the confidentiality of the route taken by the data transmitted over the network. If the route is detected by the adversary, the probability is higher that the data are lost or the data can be intercepted by the adversary. Therefore, the route must be protected. To accomplish this, we select an intermediate node secretly and transmit the data using this intermediate node, instead of sending the data to the destination node using the shortest path. Furthermore, if we use a number of secret routes from the starting node to the destination node, data security is much stronger since we can transmit partial data rather than the entire data along a secret route. In this paper, the routing algorithm for multiple secret paths on MRNS(Mixed Radix Number System) Network, which requires O(1) for the time complexity where is the number of links on a node, is presented employing the HCLS(Hamiltonian Circuit Latin Square) and is analyzed in terms of entropy.

Efficient authenticate protocol for very Low-Cost RFID (저가형 RFID 시스템을 위한 효율적인 인증 프로토콜)

  • Choi Eun Young;Choi Dong Hee;Lim Jong In;Lee Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.5
    • /
    • pp.59-71
    • /
    • 2005
  • A RFID (Radio Frequency Identification) system receives attention as the technology which can realize the ubiquitous computing environment. However, the feature of the RFID tags may bring about new threats to the security and privacy of individuals. Recently, Juels proposed the minimalist cryptography for very low-cost RFID tags, which is secure. but only under the impractical assumption such that an adversary is allowed to eavesdrop only the pre-defined number of sessions. In this paper, we propose a scheme to protect privacy for very low-cost RFID systems. The proposed protocol uses only bit-wise operations without my costly cryptographic function such as hashing, encryption which is secure which is secure against an adversary who is allowed to eavesdrop transmitted message in every session any impractical assumption. The proposed scheme also is more efficient since our scheme requires less datas as well as few number of computations than Juels's scheme.

Enhancing Method to make Cluster for Filtering-based Sensor Networks (여과기법 보안효율을 높이기 위한 센서네트워크 클러스터링 방법)

  • Kim, Byung-Hee;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.141-145
    • /
    • 2008
  • Wireless sensor network (WSN) is expected to be used in many applications. However, sensor nodes still have some secure problems to use them in the real applications. They are typically deployed on open, wide, and unattended environments. An adversary using these features can easily compromise the deployed sensor nodes and use compromised sensor nodes to inject fabricated data to the sensor network (false data injection attack). The injected fabricated data drains much energy of them and causes a false alarm. To detect and drop the injected fabricated data, a filtering-based security method and adaptive methods are proposed. The number of different partitions is important to make event report since they can make a correctness event report if the representative node does not receive message authentication codes made by the different partition keys. The proposed methods cannot guarantee the detection power since they do not consider the filtering scheme. We proposed clustering method for filtering-based secure methods. Our proposed method uses fuzzy system to enhance the detection power of a cluster.

  • PDF

Privacy-Preserving NFC-Based Authentication Protocol for Mobile Payment System

  • Ali M. Allam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1471-1483
    • /
    • 2023
  • One of the fastest-growing mobile services accessible today is mobile payments. For the safety of this service, the Near Field Communication (NFC) technology is used. However, NFC standard protocol has prioritized transmission rate over authentication feature due to the proximity of communicated devices. Unfortunately, an adversary can exploit this vulnerability with an antenna that can eavesdrop or alter the exchanged messages between NFC-enabled devices. Many researchers have proposed authentication methods for NFC connections to mitigate this challenge. However, the security and privacy of payment transactions remain insufficient. We offer a privacy-preserving, anonymity-based, safe, and efficient authentication protocol to protect users from tracking and replay attacks to guarantee secure transactions. To improve transaction security and, more importantly, to make our protocol lightweight while ensuring privacy, the proposed protocol employs a secure offline session key generation mechanism. Formal security verification is performed to assess the proposed protocol's security strength. When comparing the performance of current protocols, the suggested protocol outperforms the others.

RFID Tag's Security Level Based RFID Authentication Protocol (전자 태그의 보안 레벨을 기반으로 하는 RFID 인증 프로토콜)

  • Oh Soo-hyun;kwak Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.593-600
    • /
    • 2005
  • Recently, RFID system is a main technology to realize ubiquitous computing environments. Because RFID system that is an automatic identification technology using radio frequency is a system to read and write the data of the entity. Therefore, many companies are interested in RFID system to reduce supply chain management and inventory control cost. However, for providing secure service, RFID authentication technology secure against tracking by an adversary is researched first. In this paper, we proposed security level based RFID authentication protocol providing reduce computational and communicational workload in the back-end database. The proposed protocol is secure against reply attack, spoofing attack, traffic analysis, and location privacy, since the proposed protocol based on the security of the hash function.