
608  |  	﻿� ETRI Journal. 2019;41(5):608–618.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Keyed learning is machine learning with a key. This key is a
secret and is unknown to an adversary, and it is used as an addi-
tional input to the learning system. It can thus be considered a
cryptographic key, or more precisely a symmetric key, but it is
not used for encryption. Instead, it will influence the learning
algorithm and processes in various possible ways, including
the choice of features, hyperparameters, and system settings.

The name “keyed learning” is reminiscent of the concept
of a “keyed hash function” [1], where a cryptographic key is
used as an additional input to a hash function, and the purpose
is symmetric message authentication (hence, not encryption).
The terms “keyed intrusion detection” and “keyed learning”
have been used before [2‒8]. However, they were restricted
to particular contexts and applications. In particular, in keyed
intrusion detection, the secret key is used only as a “word de-
limiter” in intrusion payloads. In this study, we define keyed
learning as a more general concept that affects any form of
learning and uses any kind of secret information.

The main purpose of using a key is to make learning unpre-
dictable, that is, we intend to prevent an adversary from simulat-
ing the learning process and obtaining a learned classifier similar

to the one we will use. This is relevant in anomaly detection, as
the adversary will want to devise attacks that remain undetected.

To make this process difficult, we could hide the relevant
information used in the learning phase, such as the induction
algorithm and its implementation, hypothesis space, or learning
bias [9]. Many other important factors could be hidden from
the adversary, for example, the subset of available data used
for training, and the timing and context of the learning process.
Based on Kerckhoffs' principle and the best “open design”
practices [10], we concentrate hidden information in a secret
key while making the overall learning procedure public. We de-
fine a precise and general way to derive all such hidden parame-
ters and information from a secret key. We also provide a simple
method for deriving a sufficiently long key for this purpose.

In Section 2, we develop a model (Figure 1) of keyed learn-
ing. We also propose a formal definition in (3). The model is
later specialized in an implementation‐oriented framework,
suited for anomaly detection applications (Figure 4). In
Section 3, we discuss adversarial models (Passive Observer,
Active Data Selector, and Active Data Modifier) and ad-
versarial challenges (Misclassification Mining, Classifier
Disclosure, and Key Recovery). In Section 4, we describe
an anomaly detection framework and promising application

Received: 20 March 2019  |  Revised: 11 July 2019  |  Accepted: 28 August 2019

DOI: 10.4218/etrij.2019-0140

S P E C I A L I S S U E

Keyed learning: An adversarial learning framework—
formalization, challenges, and anomaly detection applications

Francesco Bergadano

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2019 ETRI

Dipartimento di Informatica, Università
degli Studi di Torino, Torino, Italy

Correspondence
Francesco Bergadano, Dipartimento di
Informatica, Università degli Studi di
Torino, Italy.
Email: francesco.bergadano@di.unito.it

Funding information
Università degli Studi di Torino, Grant/
Award Number: Ricerca Locale 2019

We propose a general framework for keyed learning, where a secret key is used as
an additional input of an adversarial learning system. We also define models and
formal challenges for an adversary who knows the learning algorithm and its input
data but has no access to the key value. This adversarial learning framework is sub-
sequently applied to a more specific context of anomaly detection, where the secret
key finds additional practical uses and guides the entire learning and alarm‐generat-
ing procedure.

K E Y W O R D S
adversarial learning, anomaly detection, keyed learning

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:francesco.bergadano@di.unito.it

     |  609BERGADANO

areas. In the concluding section, we address interesting direc-
tions for future research.

2  |   DEFINITION AND
FRAMEWORK

Cyber security and machine learning often find common ap-
plications in the area of anomaly detection. This is a natural
class of applications, because adaptive techniques can be
used to acquire the description of a security threat automati-
cally. When the current data fit this description, an anomaly
is detected. This may allow for some useful counteraction,
such as raising an alarm, blocking malicious content, or
simply switching to higher protection thresholds and more
verbose logs. For examples and surveys of applications, see
[11‒18].

However, one important issue remains to be addressed: an
adversary may prevent defensive actions by working against
us in a rational and pre‐determined way. For example, he/
she could prevent us from learning by tampering with the
available data, or even lead us to learn a wrong definition of
the target anomaly. In other cases, the adversary will only
need to predict the output of the learning phase and use this
to devise attacks that will remain undetected. Based on this
observation, a relatively new field of research has emerged,
known as adversarial learning [2‒7,19‒23] or adversarial
data mining [24].

We will follow the work of Barreno et al [2] and model
adversary actions under three dimensions:

•	 Causative vs. Exploratory. An adversary performing caus-
ative attacks will insert malicious data—for instance, some
examples that are incorrectly classified—or he/she will
alter the probability distribution of incoming examples. An
exploratory adversary will instead only want to discover
information. Most notably, he/she will want to predict the
anomaly description that we will finally learn.

•	 Targeted vs. Indiscriminate. A targeted adversary will want
a specific instance of an undetected or successful attack

because this is required for his/her practical purposes. An
indiscriminate adversary will be content with any kind of
successful attack, proving that the available defenses have
been bypassed.

•	 Integrity vs. Availability. An adversary interested in coun-
tering integrity will attempt to perform attacks that will not
be recognized. When availability is our concern, instead, the
adversary will attempt to cause the detection system to be-
come unstable or practically unusable. For instance, alarms
are caused to behave randomly or learning is made unfeasi-
ble (e.g., by performing a denial‐of‐service (DoS) attack that
will substantially limit the number of available examples).

For anomaly detection applications, the context is often as follows:

•	 Exploratory: the adversary will want to mimic our learning
procedure, or predict the classifier's output, with the aim of
performing attacks that will be classified as “normal”;

•	 Targeted: not any undetected pattern is wanted, but one
that will correspond to a practically useful attack;

•	 Integrity: in this case, the adversary may also be interested
in DoS or availability issues, but we will concentrate on
integrity in this study, where the attacker only intends to
find some attack vector that is wrongly classified.

We thus focus on preventing the adversary from succeeding in
this exploratory and targeted context. Therefore, our main ob-
jective will be to maintain our learning procedure secret and
make its results unpredictable.

One approach would be to use security through obscurity
(STO) and avoid revealing any detail of our learning pro-
cedure by maintaining it hidden and private on our servers.
STO is generally deprecated in cyber security because it can
be an easy target of attacks and social engineering and it
is generally clumsy and difficult to maintain (the so‐called
Kerckhoffs' principle). Consequently, a better approach (see,
e.g., [2‒7,9,25]) would be to have publicly available learning
algorithms, and concentrate the secrets into a cryptographic
key. Accordingly, the concept of “keyed intrusion detection”
[3,6,23,25] has been proposed. In this case, the secret keys
are used as simple “word delimiters” of intrusion payloads.
In this study, we address a more general concept of keyed
learning that applies to any learning methodology, and
where keys can affect any component of the learning system.
This idea is defined in a more precise way in the following
subsections.

2.1  |  A model of keyed learning
We will start by providing a “box and arrow” model of keyed
learning, which will be useful for a better understanding of
this concept. In the following subsection, we will provide a
more formal definition.F I G U R E 1   Keyed Learning

Learned
hypothesis

h ∈ H
Learning Key

Data Selection
Key Filter

Keyed
Learning

Examples

BiasFeatures &
hypothesis

space H

610  |     BERGADANO

Based on the standard practice, a machine learning mod-
ule will receive numerous inputs, for example,

•	 data or “examples”—in this study, we concentrate on su-
pervised learning, where such examples are associated
with a correct a priori classification (training data)

•	 features that can be used and ways of combining them into
the description of a target hypothesis (hypothesis space)

•	 “bias,” that is, some preference or precedence to be applied
to different possible hypotheses (a part of the available
prior knowledge)

and it will produce as output a “learned” hypothesis. This hy-
pothesis, when given as input future data, will provide a class
label (in concept learning), or a numerical value (in regression).

In keyed learning, we have an additional input: a key.
This key, as illustrated in Figure 1, may be divided into at

least two components:

•	 A data selection key: this is used to select only some of the
available examples, and the adversary will not know which
of them have been selected*.

•	 A learning key: this will influence the learning process so
that the adversary will not be able to reproduce it and pre-
dict its output.

Subsequently, when discussing applications, we will also con-
sider other forms of keys that may be relevant.

The key is a secret bit sequence known to the learner, but
is unpredictable for an adversary. It is used in a way similar to
a symmetric key in cryptography, except that it is not used for
encryption. The main purpose of using the key is preventing
an adversary from guessing the behavior and outputs of the
learning process.

The learning key will influence the training process in nu-
merous possible ways, including

•	 select a subset of features—this is not a process of “feature
selection” as understood in pattern recognition (aimed at
better accuracy), but rather a blind on/off labeling of fea-
tures based on the key value†. To avoid confusion, we will

call this step a keyed feature choice, allowing “feature se-
lection” to retain its traditional meaning;

•	 limit the hypothesis space, for example, by restricting the
complexity of the learned hypotheses, or by forcing a less
expressive language;

•	 set time/space constraints on the learning algorithm;
•	 choose a learning algorithm from a set of possible candi-

dates and set its parameters, for example, the maximum
depth of trees in a random forest and the number of such
trees—the key can also be used as a seed in the generation
of required random numbers;

•	 randomly select a subset of classifiers in ensemble learning;
•	 inject prior knowledge and select parts of it based on the

key, for example, in the form of partially completed classi-
fiers, to be specialized during the learning process [27];

•	 restrict the bias, for example, by giving preference to a
reduced set of hypotheses, more restricted than that sug-
gested by the original input bias;

•	 select the bias from a possibly large list of candidate bias
descriptions.

The adversary will not be able to replicate the learning process
because he/she does not know how to set such hyperparame-
ters. There should be a combinatorial number of these choices,
indicating that attempting all possible choices is no easier than
attempting all possible key values.

2.2  |  Definition
Starting from the model in Figure 1, we will now provide a
more precise definition of keyed learning. Based on [20], we
define supervised learning as the problem of finding f ′, where:

where H is a hypothesis space, S is a training set, and g is
a defined loss function. We need to find a hypothesis f ′
that minimizes the loss function when evaluated over the
training set. However, the real objective is to find such a
function f ′ anticipating that it will also behave correctly in
the future (i.e., have a minimal or practically low loss func-
tion value for new, previously unseen examples). In other
words, we want f ′ to be predictive. If f ′ is too closely fitted
to the learning examples, or if there are insufficient avail-
able data, prediction may be at risk, which is a situation
known as “overfitting.”

In a simple classification context, x is an example and y
is its correct classification, given in the training set. If a = b,
then g(a, b) = 0, and g(a, b) = 1 if a≠b, that is, if the clas-
sification is incorrect. In other words, we need to minimize
incorrect classifications.

* In online learning, where examples are produced continuously over time,
the data selection key will amount to a secret probability distribution over
the set of possible examples
† The set of features selected with the key may not be performing well and
could be redundant. In particular, some features may be repeated and
useless for the aim of prediction. The learning system could perform further
“normal” feature selection, after the available features have been
determined with the key. Redundant features could then be eliminated.
Feature selection, as performed in pattern recognition and machine
learning, is usually used to improve the overall performance, may be
predictable, and therefore represents a possible vulnerability in adversarial
learning [26].

(1)f � = arg min
f∈H

(
∑

<x,y>∈S

g (f (x),y)

)

     |  611BERGADANO

To avoid the above described overfitting problem and use
the available prior domain knowledge, a “bias” J is intro-
duced as follows:

A hypothesis f is penalized by adding J(f), based on an
a priori evaluation. Usually, J will be proportional to the
syntactic complexity of f, practically avoiding complicated
classifiers that are too closely matched around the examples.
However, the bias may also be based on prior knowledge
so that some hypotheses, even if relatively complex from a
syntactic point of view, are given a high preference (a low J
value), because they appear sensible based on the available
domain knowledge [27].

We now define keyed learning:

The key, as also explained in the previous subsection,
will help select numerous hyperparameters, including the
chosen hypothesis space Hk ⊆H, and the subset Sk of the
training set, which will be used by the learning algorithm.
Moreover, it will change the available bias, yielding a new,
modified bias Jk.

2.3  |  Key generation and parameter choice
We have described how the key, a secret held by the learner
only, can be used to select a subset of the available examples,
to be identified with a learning set. We have also stated that
the secret key can be used to influence the learning process
by selecting features and other parameters. However, how
can this be achieved in practice? We face two problems.

First, we start from a key k that is sufficiently long to avoid
a brute force attack. For instance, we could have a 256‐bit
key, which is usually considered secure in symmetric cryp-
tography. However, starting from k, we need to set a possibly
large number of choices: a subset of the examples, a subset
of features, their parameters, the algorithmic constraints, and
characteristics. There might not be sufficient bits in k to se-
lect all the options directly, and we will then need to extend
the original key and generate additional key components.

Second, we need to propose a practical, implementation‐
oriented scheme for the keyed feature choice phase. We now
address these two problems in the following two subsections.

2.3.1  |  Key extension
This is a well‐known problem in cryptography and many
techniques are available [28‒30]. We use a simplification of
TLS‐PRF in this study (transport layer security pseudo ran-
dom function, see RFC 5246 [28]).

The key k is fed to a pseudorandom function P to obtain
an infinite and secret bit stream. The function P also takes as
an input a seed value s, an arbitrary bit vector:

where || represents bit vector concatenation and

We now have an infinite and unpredictable vector of secret
bits P(k, s), thus solving the first of the above mentioned
problems. The number of possible keys has not increased, as
it is still equal to 2length(k).

2.3.2  |  Keyed parameter choice
Keyed parameter choice is illustrated in Figure 2, where a
scheme is provided for choosing numerous parameters based
on the infinite secret bit stream P(k, s).

First, we need to choose a secret subset of the available
features f1, ..., fn. A general solution might be to use the first n
bits of P(k, s). However, some features are parametric, or, in
other words, they represent a set of features, one for each pos-
sible parameter value. For instance, if we want to discriminate
a legitimate user of a web application from a robot, we might
want to evaluate the feature clickCount(p, t, min), representing
the number of links followed from page p in the application,
starting from time t and for the subsequent min minutes.

In general, feature f(n) will be chosen with 1 + len(n) bits
taken from P(k, s), where len(n) is the number of bits required
for the parameter n. The first bit will be used to determine
whether the feature is to be used at all (1 = it will be used,
0 = it will not be used). The other len(n) bits are the value of

(2)f � = arg min
f∈H

(
∑

<x,y>∈S

g (f (x), y)+J (f)

)
.

P(k, s)=HMAC
k
(A1||s)||HMAC

k
(A2||s)||… ,

A0 = s,

A
i
=HMAC

k
(A

i−1).

F I G U R E 2   Keyed parameter choice

f1
on/off

0/10/1

f1
params

f2
on/off

…

ex1
on/off

0/1 … …

Timing
keys

…0/1 … 0/1

A definition of keyed learning
Given a secret key k, find f ′ such that

(3)f � = arg min
f∈Hk

(
∑

<x,y>∈Sk

g (f (x), y)+Jk (f)

)
.

612  |     BERGADANO

the parameter. This is shown in Figure 2, where the bits used
to choose the feature f1 and its parameters are visible.

After all the features and the corresponding parameters are
chosen, we use the following bits in P(k, s) to select a subset of
the examples. If there are m examples, we use m bits in P(k, s)
to determine which are chosen to be a part of the training set.

The following bits in P(k, s) are used to select the learn-
ing hyper‐parameters such as the learning algorithm and the
parameters of this algorithm (e.g., maximum complexity of
the learned hypothesis). Finally, more bits can be used for
the overall system and application‐specific parameters, such
as timing bits (to be addressed in the applications section).

3  |   CHALLENGES

We will now define an adversarial model and address the relevant
open problems. We will limit our analysis to exploratory adver-
sarial machine learning, as defined in [2] and in Section 2 above.

In this context, we intend to make the learning process
unpredictable for the adversary so that he/she will be unable
to predict the learned hypotheses or the behavior of a learned
classifier. In general, we would like the adversary to infer as
little information as possible, ideally no more than he/she
could infer by throwing a dice. More precisely and with refer-
ence to our definition of keyed learning in (3), he/she should
be unable to find any useful information, given the general
training parameters (S, H, g, J) and possibly available input/
output samples for the learned function f ′. This will not always
be possible. To make our analysis more precise, we need to
define an adversarial model (what the adversary can do) and
formalize his/her goals (what kind of information he/she wants
to acquire).

3.1  |  Adversarial models
We will now define several adversarial models, where differ-
ent contexts emerge, based on the kind of information avail-
able, and how this information may be requested and used. In
all the models, with reference to the definition 3, we assume
that the adversary has access to the initial hypothesis space
H, loss function g, and general bias J. Not all the available
examples S may be viewed by the adversary, but often only
a subset Sa ⊆S may be viewed. For example, in network in-
trusion detection, the adversary may eavesdrop on some of
the network traffic, but not all of it. We define the following
adversarial models, from the weakest to the most powerful:

•	 Passive Observer

The adversary can only read some data but cannot modify them
or even influence their choice; three subcases are possible.
–	 Learning set observer with unclassified data

The adversary views some data x such that
∃< x, y>∈Sa ⊆S, that is, a set of unclassified examples
drawn randomly from the learning set. This is very little
information, making the adversary's job very difficult.

–	 Learning set observer with classified data
The adversary views a stream of randomly chosen ex-
amples < x, y>∈Sa ⊆S. In this case, the correct classi-
fications are known, but the adversary does not know
how the learned hypothesis will behave on those exam-
ples and on future data.

–	 Passive observer of data classified by the learner
The adversary views a stream of < x, f

′(x)> pairs,
where x is a randomly chosen and unclassified example,
and f ′(x) is the corresponding classification provided
by the learner. An eavesdropper in network intrusion
detection would fall under this case, being able to view
some network data, with some alarms being triggered.

•	 Active Data Selector (chosen input attack)
	 The adversary selects the number of inputs x, and is given

the corresponding learner's classification f ′(x). This is
meaningful in some anomaly detection applications, where
the adversary can cause unwanted situations, and check if an
alarm is triggered.

•	 Active Data Modifier (data poisoning)
	 The adversary can insert poisoned examples in S, for example,

examples with a modified classification to drive the learner away
from learning the right hypothesis. This case does not apply in
exploratory settings, and we will not refine it any further.

Finally, and following another dimension of adversary modeling,
we may consider data and algorithmic complexity. For instance,
we might require that the adversary can only view a polynomial
number of examples, or assume that he/she will only be able to
perform computations that are polynomial in time. If we take a
more practical approach, we might require that the adversary
reaches a relevant goal before some meaningful time limit.

3.2  |  Adversary goals
We will now define possible adversary goals, from the sim-
plest (A), to more difficult (B), and to the most demanding
(C). The more difficult the goals, the more harm the adver-
sary might be able to cause.

(A) Misclassification mining
Find a desired input <x, y> that is misclassified by the
learner, that is, such that

where y is the correct classification of x, and f ′(x) is the
classification provided by the learned hypothesis.

(4)g(f ′(x), y)≥�

     |  613BERGADANO

For binary classifications (e.g., normal vs. anomalous),
δ = 1. This is practically relevant in anomaly detection, as the
adversary will use an anomaly x as an attack vector, knowing
beforehand that it will not be detected.

Therefore, the average difference of the outputs of f ′ and f ′′
is less than an arbitrarily low value ε. This is a more demand-
ing goal than misclassification mining, because we intend to
approximate the behavior of the learned classifier, and not only
find a case where the learned classifier fails. When ε = 0, the
adversary needs to find a hypothesis f ′′ that behaves exactly
like f ′ on the input set T. If T is the set of all possible examples,
the adversary needs to find a hypothesis functionally equivalent
to the learned hypothesis.

If the adversary has at least as much computational power as
the learner, he/she might be able to replicate the learning process
and obtain the same classifier that the learner would have ob-
tained. It is apparent that the key recovery makes keyed learning
useless, as its idea was based on maintaining the key secret. Two
questions remain.

•	 Does Classifier disclosure (B) imply misclassification
mining (A)?

The answer is “yes,” if at least one example x∈T is misclassi-
fied by the hypothesis f ′′, which is known to the adversary, and
if ε is sufficiently small. In this case, as the learned hypothesis
f ′ is arbitrarily close to f ′′, x will also be misclassified by f ′.

•	 Does key recovery (C) imply classifier disclosure (B)?

In many practical applications, this might well be true and
probable. However, there might be cases where it does not
occur, because although the adversary uses the same key,
he/she will not obtain the same classifier, or even a sim-
ilar one. This may be because the learner and the classi-
fier have different computational powers, or because the

learning algorithm uses random inputs (as in the case of
ensemble learning).
We will now provide an example where some of these adver-

sarial models and challenges can be instantiated and discussed.

3.3  |  Adversarial goals and models:
an example
Consider the classification problem in Figure 3. This is an
extremely simple example for illustrating adversarial models
and challenges. We have two classes (“+” and “–”), where
class “+” is identified by the classifier f1 < f2. We also sup-
pose we have eight available examples in the learning set S,
four positive and four negative, as also shown in Figure 3.

With reference to our keyed learning framework, having
two non‐parametric features f1 and f2, a two‐bit key k will
suffice for keyed feature choice:

00 ⇒ no feature can be used,
01 ⇒ only f2 is used,
10 ⇒ only f1 is used,
11 ⇒ both features are used.
If k = 11 and a sufficient number of examples are avail-

able, it is evident that learning is an easy linear discrimination
problem for both the learner and the adversary. Consequently,
the adversary will win the game, being able to approximate
the learner's classifier, and hence predict its use (classifier dis-
closure as defined in the previous section). In general, when
learning is feasible and data abound, we face a difficult situa-
tion in an adversarial context, because everyone converges to
the correct classifier and no secrets can be maintained.

Let us now consider k = 10, that is, the learner can use only
f1. We must assume that the adversary does not know k. In this
simple case, the adversary could conduct a brute force attack
and attempt all possible values of the two bits in k. In real ap-
plications, we will have a sufficiently long key to avoid this
scenario. Let us then assume here, for the sake of discussion,

(B) Classifier disclosure
Find f ′′ similar to the learned hypothesis f ′

where the sum is carried over a set T of relevant
examples.

(5)
∑

<x,y>∈T

g(f �(x), f ��(x))<𝜖|T|

(C) Key recovery
Find the key k.

F I G U R E 3   A simple classification problem with two features

+ + + –

+

f2 50 100

f1

50

– – –

614  |     BERGADANO

that the adversary cannot attempt all possible values of k. Given
the eight examples of Figure 3, and based on the employed al-
gorithms and bias, the learner will produce a classifier such as
f1 < 50 (the vertical line in the figure), having 75% accuracy
on the learning set. The adversary will only be able to either
attempt a random value of k or decide to use all the available
features if sufficient data and computational power are avail-
able (k = 11). We will now consider two interesting cases for
adversarial models and goals, applied to this example.

3.3.1  |  Passive learning set observer and
classifier disclosure
The adversary does not know the key and views no more than
the eight examples of Figure 3. If a random value of the key
is selected, the adversary will obtain

k = 00 ⇒ random classification: the learner's classifier is
not disclosed, because it differs from the adversary's classi-
fier in 50% of the cases.

k = 01 ⇒ classifier f2 > 50: the two classifiers differ in
50% of the cases, again the adversary fails.

k = 10 ⇒ the adversary and learner converge to the same
classifier as more examples are viewed. This indicates that
classifier disclosure is achieved if the threshold ε in (5) is
sufficiently small and sufficient examples are processed.

k = 11 ⇒ the correct classifier f2 > f1 is learned by the
adversary, but it differs from the learner's classifier in 25%
of the cases. Consequently, the adversary fails on classifier
disclosure.

Consequently, the adversary has only a 25% probability
of achieving classifier disclosure (one out of the four above
cases), which is the same probability of flipping two coins and
selecting the right key. Notably, higher classifier power (in this
case, being able to use all the features and learning the correct
classification) does not help him/her achieve his/her goals.

3.3.2  |  Active data selector and key recovery
Let us assume that the adversary cannot conduct a full brute
force attack (attempt all possible key values and hence attempt
all feature combinations), but assume that he/she can attempt
one feature at a time. We consider a chosen input attack. By
using the chosen example <f1 = 40, f2 = 25> and asking the
learner to classify it, the adversary will obtain a wrong classifi-
cation (–) and thus exclude the use of f2 as a feature. This will
exclude the key values 01 and 11. A few more attempts will also
probably exclude random classification (k = 00). The adversary
has then detected the correct key k = 10 and wins the game.

One could attempt to analyze more cases, by combining the
five adversarial models of Section 3.1 and the three adversary
goals of Section 3.2. Different results can be obtained depend-
ing on which and how many examples are available.

3.4  |  Randomization
In numerous recent works (e.g., [4,31,32]), the concept of
randomization was used in the context of adversarial learn-
ing, with motivations similar to the present keyed learning
framework. In particular, randomization aims at hiding infor-
mation from an adversary by introducing random perturba-
tions in the learned classifiers.

In such works, a game theoretic approach was often used
and an adversary utility function is part of the definition. We
provide below an alternative formalization simplified under
the assumption that the goal of the adversary is classifier dis-
closure as defined in (5):

The requirement for r to be bounded corresponds to a per-
formance requirement for the resulting randomized classifier
R(f ′), because a large random perturbation of f ′ might cause
a degradation in the correctness of the classifier.

We now discuss the differences in the two approaches
(keyed and randomized learning) and observe whether the re-
duction properties hold. We first define the concept of mono-
tonic keyed learning as follows:

A keyed learning algorithm is monotonic with respect to
a set of examples S, if, for any pair of keys < k1, k2>, the
classifiers fk1 and fk2 learned with the two keys are similar:

The example of keyed learning in Section 3.3 is not mono-
tonic for ε ≥ 0.5 as the classifiers obtained with keys 01 and

Bounded randomized learning
Find f ′ such that

Output a randomized classifier R(f ′), where

and r is an a priori defined and efficiently computable
random function.
We also require r to be bounded

where ε is an appropriately chosen and constant value.

(6)f � = arg min
f∈H

(
∑

<x,y>∈S

g(f (x), y)+J(f)

)
.

(7)R
(
f
�
)
(x)= f

�(x) + r
(
x, f

�(x), seed
)

(8)
∑

<x,y>∈S

|r(x, f �(x), seed)|<𝜀|S|

(9)
∑

<x,y>∈S

|fk1(x)− fk2(x)|<𝜀|S|.

     |  615BERGADANO

10 differ in four out of the eight examples in the given learn-
ing set S.

In general, we do not expect monotonicity to apply for all
possible key pairs, as it would be too strong a requirement.
After fixing a learning key k1, we could instead require keyed
learning to be weakly monotonic:

in this case, the effect of changing k1 is bounded only when
averaging out over all possible alternative keys. The example
of keyed learning in Section 3.3 is weakly monotonic with
respect to k1 = 01, for ε > (10/4)/8 = 0.313, where 10/4 is the
average classification difference between k1 and each possi-
ble key value, and 8 is the number of examples in the learning
set S.

We may now formalize two reduction properties.

Reduction property 1:  Monotonic keyed learning can be
reduced to bounded randomized learning.

Proof:   We declare a base key k1 and publish it so that the
adversary will know it. We and the adversary can then com-
pute a classifier fk1. Based on the definition of keyed learning,
we then select a random, secret key k2, and obtain a learned
classifier fk2. This can be written as a randomized classifier
as follows:

where r(x, fk1(x), k2)= fk2(x)− fk1(x).
As keyed learning is assumed to be monotonic, we also

have

and hence, the keyed learning of fk2 matches the definition of
bounded randomized learning.

Reduction property 2:  Weakly monotonic keyed learning
can be reduced to bounded randomized learning if the adver-
sary can perform learning for all keys.

Proof:   The adversary can learn fk for all possible keys k,
and hence compute �k(fk(x)) for any input x. We denote by
�k(fk) the corresponding classifier function. Based on the
definition of keyed learning, we then select a random, secret
key k2, and obtain a learned classifier fk2. This can be written
as a randomized classifier as follows:

where r(x,�k(fk)(x),k2)= fk2(x)−�k(fk(x)).
As keyed learning is assumed to be weakly monotonic,

we also have

and hence the keyed learning of fk2 matches the definition of
bounded randomized learning.

However, in many practical contexts, keyed learning is not
monotonic, as changes in the key produce unexpected and poten-
tially profound differences in the learned classifiers. Moreover,
keyed learning will pose an additional burden on the adversary,
related to the combinatorial effort required to attempt all possi-
ble keys. Consequently, keyed learning and randomization are
usually distinct concepts with different characteristics.

4  |   APPLICATIONS

Applications of keyed learning fall within the scope of explora-
tory adversarial learning [2]. This context is generally appropri-
ate for anomaly detection, which comprises several application
domains, including intrusion detection [3,5,6,14,25,33,34],
attack and malware analysis [7,16,35‒37], defacement response
[8,17,38,39], Web promotional infection detection [40], and
biometric and continuous user authentication [11,18].

We will now provide a general methodology for keyed
anomaly detection based on the architecture of Figure 4.
Subsequently, we will list some specific application contexts
that fall within this scheme.

Figure 4 is derived from our general keyed learning
framework of Figure 1; however, it includes implementa-
tion‐oriented components and is specialized for anomaly
detection applications. In particular, we must consider the

(10)
∑

<x,y>∈S

|fk1(x),𝜇k(fk(x))|<𝜀|S|

(11)fk2(x)=R(fk1)(x)= fk1(x)+r(x, fk1(x), k2)

(12)
∑

<x,y>∈S

|r(x, fk1(x), k2)|=
∑

<x,y>∈S

|fk2(x)− fk1(x)|<𝜀|S|

(13)fk2(x)=R(�k(fk))(x)=�k(fk(x))+r(x,�k(fk)(x),k2)

(14)

∑

<x,y>∈S

|r(x,𝜇k(fk)(x),k2)|

=
∑

<x,y>∈S

|fk2(x)−𝜇k(fk(x))|<𝜀|S|

F I G U R E 4   Anomaly detection framework with keyed Learning

Target sequence

Classifier

Ordering Key

Learning Key

Timing Key

Evaluation

Data
Selection

Key Filter

Keyed
Learning

Examples

External data sourcesFilter

Bias

616  |     BERGADANO

fact that, in anomaly detection applications, data are often
produced continuously over time. This applies both to the
learning examples and to current data sequences that need
to be classified as either normal or anomalous. Such current
data sequences are located in the “Target sequence” box of
Figure 4, and they might be generated by several sensors and
logging agents, often running at high speeds and in parallel.

At some point, one of these target data sequences is se-
lected and the anomaly detection system will classify it, thus
generating an “ok, all normal” classification, or an alarm.
This possible alarm will then be handled by a security inci-
dent and event management (SIEM) software, and ultimately
and when required, by human intervention through a security
operations center (SOC) facility.

We first observe that the selection of this target sequence
from a possibly large set of available data should be secret.
The adversary would use any such information and will avoid
security attacks that will fall within the selected target se-
quences. In keyed anomaly detection, we will use a key com-
ponent (named “ordering key” in Figure 4) to select a data
sequence secretly for processing.

The time at which this action is taken will also be main-
tained secret. As seen in many prison‐break movies, if the
guards check the inmates at regular, predictable intervals, it will
be a huge advantage when inmates plan an escape. Therefore,
the time at which anomaly classification is undertaken should
be unknown to the adversary, and we will use another key com-
ponent for this purpose (named “timing key” in Figure 4).

Second, keyed learning will also be repeated over time, be-
cause its input data will change: the session key might change
owing to possible compromise, the bias might change, and es-
pecially more and different examples will become available.
For the same reasons described for the classifier above, the tim-
ing choice that determines when the learning process is iterated
should also be maintained secret. Therefore, in Figure 4, the
timing key is also used to trigger the keyed learning phase.

Finally, the examples are not viewed as an immutable
block of data (as in the simplified scheme of Figure 1), but
as a continuously fed database, originating from diverse data
sources. These sources include external data generators and
system/user feedback. In particular, the classifier outputs
may be analyzed and evaluated by other system components
(e.g., SIEM software) and SOC operators yielding a revised
and authoritative classification. This becomes a new exam-
ple, and is fed back to the system for future use.

The general keyed anomaly detection framework de-
scribed here can be applied to several specific domains, as
described below.

4.1  |  Network intrusion detection
Target sequences are data payloads [3,7], often arriving at
high speeds and from different sub‐networks and logging

agents [14]. We focus on a data subset at a time and extract a
target sequence to be monitored. The time at which this check
is performed is maintained secret and driven by the timing
key. Historic intrusion examples are provided by external
data sources. The example database is enriched by SOC op-
erators, who manually check some of the target data and label
them with a correct classification.

4.2  |  Continuous user authentication
Target data contain sequences of user behavior information,
including keystroke dynamics [11], smartphone location,
and smartphone use parameters (e.g., accelerometer, the fre-
quency and type of touchscreen use, audio) [28]. Some of
these data sequences are selected for classification: if anoma-
lous, an additional authentication factor is required, such as a
password, and if correct, the example is re‐labeled as normal
and fed back to the example database. If the user cannot input
a correct password, the example is labeled as anomalous and
again fed back to the database; in this case, an external alarm
is also generated.

4.3  |  Defacement response
Defacement detection and response is an important appli-
cation that can be considered a form of reverse CAPTCHA
[8,41]. The target sequence is a set of URLs within the target
website. We generate such URLs by crawling the web appli-
cation. Lower weights are provided as we move further from
the document root so that the home page and top‐level pages
of the application will be checked more frequently, because
they usually have higher reputational impact. The timing key
will be combined with such weights to trigger and feed the
classifier.

Adversarial approaches to defacement response have been
addressed in [8,9], and this is a fitting application for keyed
learning. The adversary is willing to deface our website and
can attempt to pass undetected by predicting the alarm sys-
tem behavior. We make this more difficult by using timing
and learning keys.

5  |   CONCLUSIONS AND
DIRECTIONS FOR FUTURE
RESEARCH

We have described a general scheme for keyed learning
(Figure 1), and specialized it in the previous section for the
context of anomaly detection applications (Figure 4). We
have also formalized and defined the notion of keyed learn-
ing, and then used the same notation to describe alternative
adversarial models and to define possible adversary goals.

The following broad areas of future research are of interest.

     |  617BERGADANO

5.1  |  Study the effect of key size on learning
performance
A sufficiently large key will usually be generated as an unpre-
dictable sequence of random bits, and it will influence learn-
ing (see Figure 1). However, this could be a “bad influence”
for the sake of prediction. For example, a random choice of
all available features could exclude meaningful concept de-
scriptions, and a random choice of hyperparameters may be
determined to be a bad choice. In future research, algorithms
and methodologies should be devised to prevent this effect.
One strategy could be as follows: (a) select a key, (b) evaluate
performance through cross‐validation on the available data,
and (c) go back to step 1 if the performance on the test set is
below a certain threshold. However, this might be a never‐
ending loop, or it might require an exponential number of
trials.

5.2  |  Analyze the effect of learnability on
unpredictability
In a world where there are sufficient examples and learning is
feasible, keyed learning does not work. This is because both the
learner and the adversary will converge to a correct hypothesis,
that is, they both reach the truth, perhaps in slightly different
ways. Consequently, the adversary will predict the learner, in
the sense of classifier disclosure as defined in (5). We then need
to understand and formalize situations where learning is pos-
sible but not perfect, and especially where learning can produce
equally valid, but functionally distinct results, depending on the
chosen hyper‐parameters. This can be analyzed, for example,
in a probably approximately correct learnability framework
(PAC‐learnability).

5.3  |  Define key effectiveness with respect to
unpredictability
Keyed learning will prevent a simulation of the learning
phase by the adversary. However, even in a case where per-
fect prediction may not be achieved, the adversary could use
a different hypothesis space to obtain a similar classifier, as
in (5). We should then devise methods and define cases
where different keys yield results that are different not only
formally, but also functionally, in the sense that they will pro-
duce classifications that are substantially different on new
data. In particular, we should formalize the notion of a “func-
tionally relevant feature set,” a set of features producing a
distinctive learned hypothesis‡.

In addition to the above general areas of investigation,
we suggest, as an interesting and specific target of future re-
search, the following approach:

1.	 Define a hypothesis space or language, for example,
random forests with n real‐valued features, or k‐DNF
Boolean expressions.

2.	 Select an adversarial model from among those defined in
Section 3.1, for example, passive observer, or active data
selector.

3.	 Determine whether the adversary goals of Section 3.2 can
be reached, for example, misclassification mining or key
recovery.

Finally, keyed learning can be used practically and exper-
imentally in many of the above‐cited anomaly detection
applications, such as in intrusion detection [3] and de-
facement response [8]. It could be integrated effectively
in SIEM software and in security monitoring infrastruc-
tures that may generate alarms while avoiding adversarial
counteractions.

REFERENCES

	 1.	 M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions
for message authentication, in Proc. Auun. Int. Cryptology Conf.,
Santa Barbara, CA, USA, Sug. 1996, pp. 1–15.

	 2.	 M. Barreno et al., Can machine learning be secure? in Proc. ACM
Symp. Inf., Comput. Commun. Security (AsiaCCS), ACM, Taipei,
Taiwan, Mar. 2006, pp. 16–25.

	 3.	 R. S. Mrdovic and B. Drazenovic, KIDS: a Keyed Intrusion
Detection System, in Proc. Int. Conf. Detection Intrusions Malware,
Vulnerability Assessment (DIMVA), IEEE, Bonn, Germany, July
2010, pp. 173–182.

	 4.	 B. Biggio, G. Fumera, and F. Roli, Adversarial pattern classifica-
tion using multiple classifiers and randomization, in Proc. Joint
IAPR Int. Workshop Structural, Syntactic, Statistical Pattern
Recogn., Springer, Orlando, FL, USA, Dec. 2008, pp. 500–509.

	 5.	 K. Wang, J. Parekh, and S. Stolfo, Anagram: a Content Anomaly
Detector Resistant to Mimicry Attack, in Proc. Int. Conf. Recent
Adv. Intrusion Detection, Springer, Hamburg, Germany, Sept.
2005, pp. 226–248.

	 6.	 V. M. Lomte and D. Patil, Survey on keyed IDS and key recovery
attacks, Int. J. Sci. Research 4 (2015), no. 12, 846–849.

	 7.	 R. Perdisci et al., McPAD: a multiple classifier system for accurate
payload‐based anomaly detection, Comput. Netw. 53 (2009), no. 6,
864–881.

	 8.	 F. Bergadano et al., Defacement response via keyed learning, in
Proc. Int. Conf. Inf. Intell. Syst. Applicat., Larnaca, Cyprus, Aug.
2017, pp. 1–6.

	 9.	 G. Davanzo, E. Medvet, and A. Bartoli, Anomaly detection tech-
niques for a web defacement monitoring service, Expert Syst.
Applicat. 38 (2011), no. 10, 12521–12530.

	10.	 K. Scarfone, W. Jansenamd, and M. Tracy, Guide to General
Server Security, Section 2.4, Special Publication 800–123, NIST,
Gaithersburg, MD, 2008.

‡ Again, this is not a relevant feature set as intended in pattern recognition,
where the goal is only prediction. Here, we also have a prediction goal, but
our learned hypotheses must also be different from others that would be
obtained with a different key choice.

618  |     BERGADANO

	11.	 F. Bergadano, D. Gunetti, and C. Picardi, Identity verification
through dynamic keystroke analysis, Intell. Data Analysis J. 7
(2003), no. 5, 469–496.

	12.	 G. Ruffo and F. Bergadano, Enfilter: a password enforcement and
filter tool based on pattern recognition techniques, in Proc. Int.
Conf. Image Analysis Process., Cagliari, Italy, Sept. 2005, pp.
75–82.

	13.	 S. Y. Ooi, S. C. Tan, and C. W. Ping, Anomaly Based Intrusion
Detection through Temporal Classification, in Proc. Int. Conf.
Neural Inf. Process., Kuching, Malaysia, Nov. 2014, pp. 612–619.

	14.	 J. Kim et al., A lightweight network anomaly detection technique,
in Int. Conf. Comput., Netw. Commun.(ICNC), Santa Clara, CA,
USA, Jan. 2017, pp. 1–5.

	15.	 G. Wang, J. Yang, and R. Li, Imbalanced SVM based anomaly
detection algorithm for imbalanced training datasets, ETRI J. 39
(2017), no. 5, 621–631.

	16.	 P. Parrend et al., Foundations and applications of artificial
Intelligence for zero‐day and multi‐step attack detection, EURASIP
J. Inf. Security 4 (2018), 1–21.

	17.	 F. Maggi et al., Investigating web defacement campaigns at large,
in Proc. Asia Conf. Comput. Commun. Security, Incheon, Rep. of
Korea, June 2018, pp. 443–456.

	18.	 C. Shen et al., Touch‐interaction behavior for continuous user au-
thentication on smartphones, in Proc. IEEE Int. Conf. Biometrics,
Phuket, Thailand, May 2015, pp. 157–162.

	19.	 M. Kearns and M. Li, Learning in the presence of malicious errors,
SIAM J. Comput. 22 (1993), no. 4, 807–837.

	20.	 D. Lowd and C. Meek, Adversarial Learning, in Proc. ACM Conf.
Knowledge Discovery Data Mining, ACM, Chicago, IL, UDS,
Aug. 2005, pp. 641–647.

	21.	 L. Huang et al., Adversarial machine learning, in Proc. ACM
Workshop Security Artif. Intell., Chicago, IL, USA, Oct. 2011, pp.
43–58.

	22.	 N. Šrndic and P. Laskov, Practical evasion of a learning‐based
classifier: A case study, in Proc. IEEE Symp.Security Privacy, San
Jose, CA, USA, May 2014, pp. 197–211.

	23.	 J. E. Tapiador et al., Key‐recovery attacks on KIDS, a keyed anom-
aly detection system, IEEE Trans. Dependable Secure Comput. 12
(2015), no. 3, 312–325.

	24.	 C. Aggarwal, J. Pei, and B. Zhang, On privacy preservation against
adversarial data mining, in Proc. ACM SIGKDD Int. Conf.
Knowled. Discovery Data Mining, ACM, Philadelphia, PA, USA,
Aug. 2006, pp. 510–516.

	25.	 R. Bendale et al., KIDS: Keyed Anomaly Detection System, Int. J.
Adv. Eng. Res. Dev. 12 (2017), 312–325.

	26.	 H. Xiao et al., Is feature selection secure against training data poi-
soning? in Proc. Int. Conf. Mach. Learn., Lille, France, July 2015,
pp. 1689–1698.

	27.	 F. Bergadano and A. Giordana, A knowledge intensive Approach to
concept induction, in Proc. Fifth Int. Conf. Mach. Learn., Margan
Kaufmann Publishers, Ann Arbor, MI, USA, June 1988, pp.
305–317.

	28.	 T. Dierks and E. Rescorla, The Transport Layer Security (TLS)
Protocol Version 1.2, RFC 5246, IETF, 2008, https​://doi.
org/10.17487/​rfc5246.

	29.	 J. Arkkom et al., MIKEY: Multimedia Internet KEYing, RFC3820,
IETF, 2004, https​://doi.org/10.6028/NIST.SP.800-108.

	30.	 L. Chen, Recommendation for Key Derivation Using Pseudorandom
Functions, NIST Special Publication 800–108, NIST, 2009.

	31.	 Y. Vorobeychik and B. Li, Optimal randomized classification in ad-
versarial settings, in Proc. Conf. Autonomous Agents Multiagent
Syst., Paris, France, May 2014, pp. 485–492.

	32.	 S. Rota Bulò et al., Randomized prediction games for adversar-
ial machine, learning, IEEE Trans. Neural Netw. Learn. Syst. 28
(2017), no. 11, 2466–2478.

	33.	 N. Munaiah et al., Are Intrusion Detection Studies Evaluated
Consistently? A Systematic Literature Review, Technical Report,
University of Rochester, 2016.

	34.	 S. Anwar et al., From intrusion detection to an intrusion response
system: fundamentals, requirements, and future directions, MDPI
Algorithms J. 10 (2017), no. 39, 1–24.

	35.	 S. Kim and B. B. Kang, FriSM: malicious exploit kit detection via
feature‐based string‐similarity matching, in Proc. Int. Conf. Security
Privacy Commun. Netw., Singapore, Aug. 2018, pp. 416–432.

	36.	 Y. Bae, I. Kim, and S. O. Hwang, An efficient detection of TCP Syn
flood attacks with spoofed IP addresses, J. Intell. Fuzzy Syst. 35
(2018), no. 6, 5983–5991.

	37.	 Q. T. Hai and S. O. Hwang, An efficient classification of mal-
ware behavior using deep neural network, J. Intell. Fuzzy Syst. 35
(2018), no. 6, 5801–5814.

	38.	 K. Borgolte, C. Kruegel, and G. Vigna, Meerkat: Detecting website de-
facements through image‐based object recognition, in Proc. USENIX
Security Symp., Washington, D.C., USA, Aug. 2015, pp. 595–610.

	39.	 A. Bartoli, G. Davanzo, and E. Medvet, A framework for large‐
scale detection of web site defacements, ACM Trans. Internet
Technol. 10 (2010), no. 3, 1–3.

	40.	 X. Liao et al., Seeking nonsense, looking for trouble: efficient
promotional‐infection detection through semantic inconsistency
search, in Proc. IEEE Symp. Security Privacy, San Jose, CA, USA,
May 2016, pp. 707–723.

	41.	 A. Basso and F. Bergadano, Anti‐bot strategies based on human in-
teractive proofs, in Handbook of Information and Communication
Security, Springer, New York, 2010, pp. 273–291.

AUTHOR BIOGRAPHY

Francesco Bergadano obtained his
PhD degree in computer science from
the Universities of Milan and Turin. He
has then worked as a visiting Professor
at George Mason University (USA), an
Associate Professor at the University of
Catania (Italy), and now a Full Professor

at the University of Turin (Italy). In the past, he has been a
consultant for companies and public administrations, and a
principal investigator in several national and EU‐funded re-
search projects. More recently, he was an evaluator for EU
H2020 proposals. He has authored more than 120 publica-
tions in the areas of machine learning and IT security. His
current research interests are in the area of cyber security,
including adaptive anomaly detection, continuous and bio-
metric user authentication, security analytics, and mobile
application security.

https://doi.org/10.17487/rfc5246
https://doi.org/10.17487/rfc5246
https://doi.org/10.6028/NIST.SP.800-108

