• 제목/요약/키워드: adversarial network

검색결과 286건 처리시간 0.02초

소수의 협소화각 RGBD 영상으로부터 360 RGBD 영상 합성 (360 RGBD Image Synthesis from a Sparse Set of Images with Narrow Field-of-View)

  • 김수지;박인규
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.487-498
    • /
    • 2022
  • 깊이 영상은 3차원 공간상의 거리 정보를 2차원 평면에 나타낸 영상이며 다양한 3D 비전 연구에서 유용하게 사용된다. 기존의 많은 깊이 추정 연구는 주로 좁은 FoV (Field of View) 영상을 사용하여 전체 장면 중 상당 부분이 소실된 영상에 대한 깊이 정보를 추정한다. 본 논문에서는 소수의 좁은 FoV 영상으로부터 360° 전 방향 RGBD 영상을 동시에 생성하는 기법을 제안한다. 오버랩 되지 않는 4장의 소수 영상으로부터 전체 파노라마 영상에 대해서 상대적인 FoV를 추정하고 360° 컬러 영상과 깊이 영상을 동시에 생성하는 적대적 생성 신경망 기반의 영상 생성 모델을 제안하였으며, 두 모달리티의 특징을 공유하여 상호 보완된 결과를 확인한다. 또한 360° 영상의 구면 특성을 반영한 네트워크를 구성하여 개선된 성능을 보인다.

Dog-Species Classification through CycleGAN and Standard Data Augmentation

  • Chan, Park;Nammee, Moon
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.67-79
    • /
    • 2023
  • In the image field, data augmentation refers to increasing the amount of data through an editing method such as rotating or cropping a photo. In this study, a generative adversarial network (GAN) image was created using CycleGAN, and various colors of dogs were reflected through data augmentation. In particular, dog data from the Stanford Dogs Dataset and Oxford-IIIT Pet Dataset were used, and 10 breeds of dog, corresponding to 300 images each, were selected. Subsequently, a GAN image was generated using CycleGAN, and four learning groups were established: 2,000 original photos (group I); 2,000 original photos + 1,000 GAN images (group II); 3,000 original photos (group III); and 3,000 original photos + 1,000 GAN images (group IV). The amount of data in each learning group was augmented using existing data augmentation methods such as rotating, cropping, erasing, and distorting. The augmented photo data were used to train the MobileNet_v3_Large, ResNet-152, InceptionResNet_v2, and NASNet_Large frameworks to evaluate the classification accuracy and loss. The top-3 accuracy for each deep neural network model was as follows: MobileNet_v3_Large of 86.4% (group I), 85.4% (group II), 90.4% (group III), and 89.2% (group IV); ResNet-152 of 82.4% (group I), 83.7% (group II), 84.7% (group III), and 84.9% (group IV); InceptionResNet_v2 of 90.7% (group I), 88.4% (group II), 93.3% (group III), and 93.1% (group IV); and NASNet_Large of 85% (group I), 88.1% (group II), 91.8% (group III), and 92% (group IV). The InceptionResNet_v2 model exhibited the highest image classification accuracy, and the NASNet_Large model exhibited the highest increase in the accuracy owing to data augmentation.

Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성 (Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks)

  • 김현호;한석민
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.23-31
    • /
    • 2020
  • 본 연구는 철도표면상에 발생하는 노후 현상 중 하나인 결함 검출을 위해 학습데이터를 생성함으로써 결함 검출 모델에서 더 높은 점수를 얻기 위해 진행되었다. 철도표면에서 결함은 선로결속장치 및 선로와 차량의 마찰 등 다양한 원인에 의해 발생하고 선로 파손 등의 사고를 유발할 수 있기 때문에 결함에 대한 철도 유지관리가 필요 하다. 그래서 철도 유지관리의 자동화 및 비용절감을 위해 철도 표면 영상에 영상처리 또는 기계학습을 활용한 결함 검출 및 검사에 대한 다양한 연구가 진행되고 있다. 일반적으로 영상 처리 분석기법 및 기계학습 기술의 성능은 데이터의 수량과 품질에 의존한다. 그렇기 때문에 일부 연구는 일반적이고 다양한 철도표면영상의 데이터베이스를 확보하기위해 등간격으로 선로표면을 촬영하는 장치 또는 탑재된 차량이 필요로 하였다. 본연구는 이러한 기계적인 영상획득 장치의 운용비용을 감소시키고 보완하기 위해 대표적인 영상생성관련 딥러닝 모델인 생성적 적대적 네트워크의 기본 구성에서 여러 관련연구에서 제시된 방법을 응용, 결함이 있는 철도 표면 재생성모델을 구성하여, 전용 데이터베이스가 구축되지 않은 철도 표면 영상에 대해서도 결함 검출을 진행할 수 있도록 하였다. 구성한 모델은 상이한 철도 표면 텍스처들을 반영한 철도 표면 생성을 학습하고 여러 임의의 결함의 위치에 대한 Ground-Truth들을 만족하는 다양한 결함을 재 생성하도록 설계하였다. 재생성된 철도 표면의 영상들을 결함 검출 딥러닝 모델에 학습데이터로 사용한다. 재생성모델의 유효성을 검증하기 위해 철도표면데이터를 3가지의 하위집합으로 군집화 하여 하나의 집합세트를 원본 영상으로 정의하고, 다른 두개의 나머지 하위집합들의 몇가지의 선로표면영상을 텍스처 영상으로 사용하여 새로운 철도 표면 영상을 생성한다. 그리고 결함 검출 모델에서 학습데이터로 생성된 새로운 철도 표면 영상을 사용하였을 때와, 생성된 철도 표면 영상이 없는 원본 영상을 사용하였을 때를 나누어 검증한다. 앞서 분류했던 하위집합들 중에서 원본영상으로 사용된 집합세트를 제외한 두 개의 하위집합들은 각각의 환경에서 학습된 결함 검출 모델에서 검증하여 출력인 픽셀단위 분류지도 영상을 얻는다. 이 픽셀단위 분류지도영상들과 실제 결함의 위치에 대한 원본결함 지도(Ground-Truth)들의 IoU(Intersection over Union) 및 F1-score로 평가하여 성능을 계산하였다. 결과적으로 두개의 하위집합의 텍스처 영상을 이용한 재생성된 학습데이터를 학습한 결함 검출모델의 점수는 원본 영상만을 학습하였을 때의 점수보다 약 IoU 및 F1-score가 10~15% 증가하였다. 이는 전용 학습 데이터가 구축되지 않은 철도표면 영상에 대해서도 기존 데이터를 이용하여 결함 검출이 상당히 가능함을 증명하는 것이다.

에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환 (Makeup transfer by applying a loss function based on facial segmentation combining edge with color information)

  • 임소현;전준철
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.35-43
    • /
    • 2022
  • 메이크업은 사람의 외모를 개선하는 가장 보편적인 방법이다. 하지만 메이크업의 스타일이 매우 다양하기 때문에 한 개인이 본인에게 직접 메이크업을 하는 것에는 많은 시간적, 비용적 문제점이 존재한다. 이에 따라 메이크업 자동화에 대한 필요성이 증가하고 있다. 메이크업의 자동화를 위해 메이크업 변환(Makeup Transfer)가 연구되고 있다. 메이크업 변환은 메이크업이 없는 얼굴 영상에 메이크업 스타일을 적용시키는 분야이다. 메이크업 변환은 전통적인 영상 처리 기반의 방법과 딥러닝 기반의 방법으로 나눌 수 있다. 특히 딥러닝 기반의 방법에서는 적대적 생성 신경망을 기반으로 한 연구가 많이 수행되었다. 하지만 두 가지 방법 모두 결과 영상이 부자연스럽거나 메이크업 변환의 결과가 뚜렷하지 않고 번지거나 메이크업 스타일 얼굴 영상의 영향을 많이 받는다는 단점이 있다. 메이크업의 뚜렷한 경계를 표현하고 메이크업 스타일 얼굴 영상에서 받는 영향을 완화시키기 위해 본 연구에서는 메이크업 영역을 분할하고 HoG(Histogram of Gradient)를 사용해 손실 함수를 계산한다. HoG는 영상 내에 존재하는 에지의 크기와 방향성을 통해 영상의 특징을 추출하는 방법이다. 이를 통해 에지에 대해 강건한 학습을 수행하는 메이크업 변환에 대해 제안한다. 제안한 모델을 통해 생성된 영상과 베이스 모델로 사용하는 BeautyGAN을 통해 생성된 영상을 비교해 본 연구에서 제안한 모델의 성능이 더 뛰어남을 확인하고 추가로 제시할 수 있는 얼굴 정보에 대한 사용 방법을 향후 연구로 제시한다.

다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구 (Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques)

  • 박경선;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.449-456
    • /
    • 2021
  • 침입 탐지 시스템(IDS: Intrusion Detection System)은 보안을 침해하는 이상 행위를 탐지하는 기술로서 비정상적인 조작을 탐지하고 시스템 공격을 방지한다. 기존의 침입탐지 시스템은 트래픽 패턴을 통계 기반으로 분석하여 설계하였다. 그러나 급속도로 성장하는 기술에 의해 현대의 시스템은 다양한 트래픽을 생성하기 때문에 기존의 방법은 한계점이 명확해졌다. 이런 한계점을 극복하기 위해 다양한 기계학습 기법을 적용한 침입탐지 방법의 연구가 활발히 진행되고 있다. 본 논문에서는 다양한 네트워크 환경의 트래픽을 시뮬레이션 장비에서 생성한 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 이상(Anomaly) 탐지 정확도를 높일 수 있는 데이터 전처리 기법에 관한 비교 연구를 진행하였다. 데이터 전처리로 패딩(Padding)과 슬라이딩 윈도우(Sliding Window)를 사용하였고, 정상 데이터 비율과 이상 데이터 비율의 불균형 문제를 해결하기 위해 AAE(Adversarial Auto-Encoder)를 적용한 오버샘플링 기법 등을 적용하였다. 또한, 전처리된 시퀀스 데이터의 특징벡터를 추출할 수 있는 Word2Vec 기법 중 Skip-gram을 이용하여 탐지 정확도의 성능 향상을 확인하였다. 비교실험을 위한 모델로는 PCA-SVM과 GRU를 사용하였고, 실험 결과는 슬라이딩 윈도우, Skip-gram, AAE, GRU를 적용하였을 때, 더 좋은 성능을 보였다.

적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성 (Multidimensional data generation of water distribution systems using adversarially trained autoencoder)

  • 김세형;전상훈;정동휘
    • 한국수자원학회논문집
    • /
    • 제56권7호
    • /
    • pp.439-449
    • /
    • 2023
  • 최근 계측 기술의 발전으로 압력계와 유량계 등 다양한 센서를 설치하여 상수도관망의 상태를 효과적으로 파악할 수 있게 되었으나, 도시가 광범위하게 개발됨에 따라 계측 신뢰도에 영향을 미치는 변수는 다양해지고 있다. 특히 상수도관망 분석에 중요한 영향력을 가지는 수요 데이터의 경우 직접 계측의 난이도가 높고 결측이 발생하기 쉬운 것으로 알려져 데이터 생성의 중요도가 증가하고 있다. 본 논문에서는 상수도관망에서 누락된 데이터를 정확하게 생성하기 위해 생성적 딥러닝 모델에 기반한 적대적 학습 기반 오토인코더(ATAE) 모델을 제안한다. 제안된 모델은 판별 신경망과 생성 신경망의 두 가지 신경망의 적대적 학습을 사용하여 압력 데이터로부터 수요 데이터를 생성한다. 학습이 완료된 ATAE 모델의 생성 신경망은 관망의 계측되는 압력 데이터가 존재하는 경우, 그로부터 추정된 관망 수요 데이터를 제공할 수 있다. ATAE 모델은 미국 텍사스주 오스틴의 실제 상수도망에 적용되어 성능이 검증되었다. 수요 및 압력 시계열 데이터의 불확실성 정도에 따른 ATAE 예측 결과의 정확도를 비교하여 데이터 불확실성의 영향을 분석하였으며, 또한 수요 수준에 따른 데이터 수집 기간별 생성 결과를 비교하여 이에 따른 데이터 생성 성능을 검토하였다.

원격 탐사 영상을 활용한 CNN 기반의 초해상화 기법 연구 (A Study of CNN-based Super-Resolution Method for Remote Sensing Image)

  • 최연주;김민식;김용우;한상혁
    • 대한원격탐사학회지
    • /
    • 제36권3호
    • /
    • pp.449-460
    • /
    • 2020
  • 초해상화 기법은 저해상도 영상을 고해상도 영상으로 변환하는 기법이다. 최근에는 딥러닝 기술을 활용한 초해상화 방법이 주류를 이루고 있으며, 원격 탐사 분야에서도 이를 응용한 연구가 증가하고 있다. 본 연구에서는 위성 영상의 4배 해상도 향상을 위하여 deep back-projection network (DBPN) 네트워크에 기반한 초해상화 기법을 제안하였다. 또한, 복원된 영상의 디테일 및 윤곽선 부분에서의 고품질 영상 획득을 위해 윤곽선 손실 함수를 제안하고, 효과적이고 안정적인 학습을 위하여 Wasserstein distance 손실 함수를 사용한 GAN 기법을 적용하였다. 또한, 자연스러운 저해상도 훈련 영상을 획득하기 위한 detail preserving image downscaling (DPID) 기법을 적용하였다. 마지막으로 전정 영상의 특징을 추출하여 훈련의 마지막 단계에 적용 시킴으로써 출력 영상의 세부적인 특징을 효과적으로 생성하였다. 그 결과 실험에 사용된 WorldView-3 영상 및 KOMPSAT-2 영상에서 해상도 향상 효과를 확인하였고, 다른 초해상화 모델에 대비하여 윤곽선 보존력이나 영상의 선명도가 향상 되었음을 확인하였다

적대적 생성 신경망을 활용한 비지도 학습 기반의 대기 자료 이상 탐지 알고리즘 연구 (A Study on Atmospheric Data Anomaly Detection Algorithm based on Unsupervised Learning Using Adversarial Generative Neural Network)

  • 양호준;이선우;이문형;김종구;최정무;신유미;이석채;권장우;박지훈;정동희;신혜정
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.260-269
    • /
    • 2022
  • 본 논문에서는 기존에 전문가에 의해서 이루어지던 국가 대기오염 측정망 데이터들의 이상 탐지 작업을 인공지능을 통해 자동화하고자 심층 신경망을 이용한 이상 탐지 모델을 제안하였다. 환경과학원에서 제공받은 기상자료 데이터의 결측치 및 이상치를 분석하여 학습데이터를 생성하였으며 비지도 학습 방식의 BeatGAN 모델에 기반하여 커널 구조 변경과 합성곱 필터층 및 전치 합성곱 필터층의 추가를 통해 새로운 모델을 제안하여 이상 탐지 성능을 높이고자 하였다. 또한 제안하는 모델의 생성적 특징을 활용하여 새로운 데이터를 생성하고 이를 학습에 사용하는 재학습 알고리즘을 구현 및 적용하여 기존 BeatGAN 모델뿐 아니라 다른 비지도 학습 모델인 Iforest, One Class SVM과 비교하였을 때 제안모델의 성능이 가장 높았음을 확인할 수 있었다. 본 연구를 통해 실제 산업현장에서 센서의 이상, 점검 등의 여러 요인으로 인해 학습 데이터가 부족한 상황에서 추가적인 비용없이 과적합을 피하며 제안하는 모델의 이상탐지 성능을 올릴 수 있는 방법을 제시할 수 있었다.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석 (A Security Analysis of Zhao and Gu's Key Exchange Protocol)

  • 남정현;백주련;이영숙;원동호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권9호
    • /
    • pp.91-101
    • /
    • 2012
  • 키 교환 프로토콜은 공개 네트워크상에서 안전한 통신 채널을 구축하는데 필수적인 요소이다. 특히, 패스워드 기반 키 교환 프로토콜에서는 패스워드를 이용하여 사용자 인증이 이루어지며 이를 바탕으로 안전하게 키 교환이 이루어지도록 설계되어야 한다. 그러나 패스워드는 인간이 쉽게 기억할 수 있는 반면에 엔트로피가 낮고 따라서 사전공격에 쉽게 노출될 수 있다. 최근, Zhao와 Gu가 서버의 도움을 필요로 하는 새로운 패스워드 기반 키 교환 프로토콜을 제안하였다. Zhao와 Gu가 제안한 프로토콜은 일회성 비밀키의 노출 상황을 고려하는 공격자 모델에서도 안전성이 증명가능하다고 주장하였다. 본 논문에서는 Zhao와 Gu의 프로토콜에 대한 재전송 공격을 통하여 이 프로토콜이 저자들의 주장과 달리 일회성 비밀키의 노출 시에 안전하지 않다는 것을 보일 것이다. 본 연구 결과는 Zhao와 Gu가 제시한 안전성 증명이 성립하지 않음을 의미한다.