
Journal of The Korea Society of Computer and Information

Vol. 17 No. 9, September 2012

www.ksci.re.kr

http://dx.doi.org/10.9708/jksci/2012.17.9.091

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석

남 정 현*, 백 주 련**, 이 영 숙***, 원 동 호**

A Security Analysis of Zhao and Gu's Key Exchange

Protocol

Junghyun Nam*, Juryon Paik**, Youngsook Lee***, Dongho Won**

요 약

키 교환 프로토콜은 공개 네트워크상에서 안전한 통신 채널을 구축하는데 필수적인 요소이다. 특히, 패스워드

기반 키 교환 프로토콜에서는 패스워드를 이용하여 사용자 인증이 이루어지며 이를 바탕으로 안전하게 키 교환이

이루어지도록 설계되어야 한다. 그러나 패스워드는 인간이 쉽게 기억할 수 있는 반면에 엔트로피가 낮고 따라서 사

전공격에 쉽게 노출될 수 있다. 최근, Zhao와 Gu가 서버의 도움을 필요로 하는 새로운 패스워드 기반 키 교환 프

로토콜을 제안하였다. Zhao와 Gu가 제안한 프로토콜은 일회성 비밀키의 노출 상황을 고려하는 공격자 모델에서도

안전성이 증명가능하다고 주장하였다. 본 논문에서는 Zhao와 Gu의 프로토콜에 대한 재전송 공격을 통하여 이 프

로토콜이 저자들의 주장과 달리 일회성 비밀키의 노출 시에 안전하지 않다는 것을 보일 것이다. 본 연구 결과는

Zhao와 Gu가 제시한 안전성 증명이 성립하지 않음을 의미한다.

▸Keywords : 안전성, 키 교환 프로토콜, 패스워드, 공격

Abstract

Key exchange protocols are essential for building a secure communication channel over an

insecure open network. In particular, password-based key exchange protocols are designed to work

when user authentication is done via the use of passwords. But, passwords are easy for human

beings to remember, but are low entropy and thus are subject to dictionary attacks. Recently, Zhao

∙제1저자 : 남정현 ∙교신저자 : 원동호

∙투고일 : 2012. 07. 05, 심사일 : 2012. 08. 02, 게재확정일 : 2012. 09. 03.

* 건국대학교 컴퓨터공학과(Dept. of Computer Engineering, Konkuk University)

** 성균관대학교 컴퓨터공학과(Dept. of Computer Engineering, Sungkyunkwan University)

*** 호원대학교 사이버수사 경찰학부(Dept. of Cyber Investigation Police, Howon University)

※ This paper was written as part of Konkuk University's research support program for its faculty on

sabbatical leave in 2012.

92 Journal of The Korea Society of Computer and Information September 2012

and Gu proposed a new server-aided protocol for password-based key exchange. Zhao and Gu’s

protocol was claimed to be provably secure in a formal adversarial model which captures the notion

of leakage of ephemeral secret keys. In this paper, we mount a replay attack on Zhao and Gu’s

protocol and thereby show that unlike the claim of provable security, the protocol is not secure

against leakage of ephemeral secret keys. Our result implies that Zhao and Gu’s proof of security

for the protocol is invalid.

▸Keywords :Security, Key exchange protocol, Password, Attack

I. Introduction

Key exchange protocols are designed to allow two

or more parties to establish a common secret key

over a public network. This secret key, commonly

called a session key, is then typically used to build

confidential or integrity-protected communication

channel between the parties. The highest priority in

designing a key exchange protocol is placed on

ensuring the security of session keys to be

established by the protocol. Roughly speaking,

establishing a session key securely means that the

key is being known only to the intended parties at

the end of the protocol run. But unfortunately, the

experience has shown that the design of secure key

exchange protocols is notoriously difficult. Thus, key

exchange protocols must be subjected to a thorough

and systematic scrutiny before they are deployed

into a public network, which might be controlled by

an adversary.

Secure session-key generation requires an

authentication mechanism to be integrated into key

exchange protocols. In turn, achieving any form of

authentication inevitably requires some secret

information to be established between users in

advance of the authentication stage. Cryptographic

keys, either secret keys for symmetric cryptography

or private/public keys for asymmetric cryptography,

may be one form of the underlying secret

information pre-established between users. However,

these high-entropy cryptographic keys are random in

appearance and thus are difficult for humans to

remember, entailing a significant amount of

administrative work and costs. Eventually, it is this

drawback that password-based authentication has

come to be widely used in reality. Passwords are

drawn from a relatively small space like a

dictionary, and are easier for humans to remember

than cryptographic keys with high entropy.

Bellovin and Merritt [1] was the first to consider

how two parties, who only share a weak,

low-entropy password, and who are communicating

over a public network, authenticate each other and

agree on a high-entropy cryptographic key to be

used for protecting their subsequent communication.

Their protocol, known as encrypted key exchange, or

EKE, was a great success in showing how one can

exchange password authenticated information while

protecting poorly-chosen passwords from the

notorious password guessing attacks. Due in large

part to the practical significance of password-based

authentication, this initial work has been followed by

a number of two-party protocols (e.g., [2][3][4][5]

[6][7]) offering various levels of security and

complexity.

While two-party protocols for password-authenticated

key exchange (PAKE) are well suited for client-server

architectures, they are inconvenient and costly for

use in large scale peer-to-peer systems. Since two-party

PAKE protocols require each pair of potential

communication parties to share a password, a large

number of parties result in an even larger number of

passwords to be shared. It is due to this problem

that three-party models have been often used in

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석 93

Fig. 1. Zhao and Gu’s Three-Party PAKE Protocol

94 Journal of The Korea Society of Computer and Information September 2012

designing PAKE protocols (e.g., [8][9][10][11][12]).

In a typical three-party setting, each party (often

called client) does not need to remember and

manage multiple passwords, but shares only a single

password with a trusted server who then assists

clients in establishing a session key by providing

authentication services to them. However, this

convenience comes at the price of clients’ trust in

the server. Despite this drawback, the three-party

model offers an effective, realistic solution to the

problem of session key exchange in large

peer-to-peer systems, and in fact is assumed by the

popular Kerberos authentication system [13].

Recently, Zhao and Gu [14] proposed a

three-party PAKE protocol making use of the

trapdoor test technique introduced by Cash, Kiltz,

and Shoup [15]. Zhao and Gu’s protocol was claimed

to be provably secure under the assumption that the

hash functions used in the protocol are random

oracles. The adversarial model, where security of the

protocol is proven, captures the notion of strong

corruption by allowing the adversary to ask

EphemeralKeyReveal queries. An EphemeralKeyReveal

query against a user instance outputs all the

ephemeral secrets used by the instance during the

protocol execution. Allowing an adversary to ask

EphemeralKeyReveal queries models the adversary’s

capability to embed a Trojan horse or other form of

malicious code into a user’s machine and then obtain

all the session-specific information of the victim.

Since Zhao and Gu’s protocol is proven secure in a

model that allows EphemeralKeyReveal queries, it

should be secure against strong corruption. But

what we found is the opposite: Zhao and Gu’s

protocol does not exhibit resistance against strong

corruption. Indeed, Zhao and Gu’s protocol is

vulnerable to a replay attack where the adversary

asks an EphemeralKeyReveal query in its attack.

We here reveal this security vulnerability of Zhao

and Gu’s protocol. Our result invalidates the claimed

proof of security for the protocol.

II. Review of Zhao and Gu’s Protocol

This section describes the three-party PAKE

protocol proposed by Zhao and Gu [14]. The protocol

participants consist of a single server  and two

clients  and  . The clients  and  wish to

establish a session key between them while the

server  exists to provide the clients with

authentication services. We denote by  , 

and  the identities of  ,  and  , respectively.

Let  and  be the passwords of  and

 , respectively. Each client’s password is assumed

to be shared with the authentication server  via a

secure channel. The followings are the public system

parameters used in the protocol.

Two large primes  and  with  , and a

generator  of group  of order .

A pair of symmetric encryption/decryption algorithms

(, ) modeled as an ideal cipher [2].

Three hash functions ,  and  modeled as

random oracles [16].  and  map  to



 while  maps  to  , where  is a

security parameter representing the length of

session keys.

Once ,  and  are fixed, the server 

generates its long-term private/public keys 

such that ∈ and   . A high-level

depiction of the protocol is given in Fig. 1, and a

more detailed description follows:

Client  chooses random ∈ and computes

  
 and   

. Then  verifies if  lies

in . If not,  aborts. Otherwise,  computes

  ,   

,   




 , and   ,

where  is a random value. Finally,  deletes the

ephemeral secret  and sends  〈

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석 95

〉 to  .

Similarly,  chooses random ∈ and

computes   
 and   

. Then  verifies

if  lies in  . If not,  aborts. Otherwise, 

computes    ,    ,

   


   and

   , where  is a random

value. Finally,  deletes  and sends

 〈〉 to  .

Upon receiving  and  , the server 

verifies if all of  , , ,  ,  and  lie in

 . If not,  aborts. Otherwise,  computes

′     and

′      by using

its private key . Then  performs the decryptions

′′  ′  and ′′  ′ 
and verifies that  ′   and

 ′   . If  ′ ≠ or

 ′ ≠ , then  aborts. Otherwise, 

computes   ′ 
and sends  〈〉 to

 , where  is a random value chosen by  .

Similarly,  computes   ′ 
and sends  〈〉 to

 , where  is a random value chosen by  . At

last,  deletes the session-specific information:

′′ ′ ′.

After receiving  ,  checks if (1)  , 

and  lie in  and (2)    

 . If any of these are untrue, 

aborts. Otherwise,  computes   

 ,   

,   


,   

  

and   
 . Finally,  defines the session

ID    

and computes the session key   

.

Similarly, on receiving ,  checks if (1)  ,

 and  lie in  and (2)

   . If

any of these are untrue,  aborts. Otherwise, 

computes     ,   
 ,

  
 ,   


 and   


.

Finally,  defines the session ID

    and

computes the session key    .

III. Adversarial Model

Zhao and Gu’s protocol comes along with a

claimed proof of its security in a formal model of

adversarial capabilities. The adversarial model that

they used is the one of Yoneyama [12] and captures

security against strong corruption [2][17][18]. Here

we provide an overview of the adversarial model as a

preliminary step towards mounting an ephemeral-

key reveal attack against the protocol.

1. Participants

Each participant  in a three-party key

exchange is either a client  or the trusted server

 . Each  may run the protocol multiple times

either serially or concurrently, with possibly

different participants. Thus, at a given time, there

could be many instances of a single client and the

server. 


 denotes instance  of a participant  .

An instance 


 is said to accept when it computes

a valid session key 


. During the initialization

phase of the protocol, the server  generates its

long-term private/public key pair (,   ) and

each client  chooses a password  as their

long-term secret key and shares it with  .

96 Journal of The Korea Society of Computer and Information September 2012

Passwords are drawn from a dictionary  .

2. Adversary

The adversary is in complete control of every

aspect of all communications between participants,

and may ask, at any time, them to open up access to

their long-term secret keys. These capabilities and

others of the adversary are modeled via various

oracles to which the adversary is allowed to make

queries.

Execute(

,  ′ , 


): This query prompts

an honest execution of the protocol among the client

instances 

 and  ′ and the server instance



. The transcript of the honest execution is

returned to the adversary as the output of the

query. This oracle call represents passive

eavesdropping of a protocol execution.

SendClient(

, ): This query sends

message  to the client instance 

. The

instance 

 proceeds as it would in the protocol

upon receiving  . The response message

generated by 

, if any, is the output of this query

and is returned to the adversary. A query of the

form SendClient(

, start: ′) prompts 


 to

initiate the protocol with a client  ′ (≠).

SendServer(

, ): This query sends

message  to the server instance 

. The

instance 

 proceeds as it would in the protocol

upon receiving  . The response message

generated by 

, if any, is the output of this query

and is returned to the adversary.

Long-termKeyReveal(): This query outputs the

long-term secret key of  . This oracle call captures

the idea that damage due to loss of  ’s long-term

key should be restricted to those sessions where 
will participate in the future.

EphemeralKeyReveal(


): This query returns

all short-term secrets used by instance 


. This

models the adversary’s capability to embed a Trojan

horse or other form of malicious code into a user’s

machine and then obtain all the session-specific

information of the victim.

SessionKeyReveal(

): This query returns the

session key 

 held by instance 


, modeling

leakage of session keys. This oracle call captures the

idea that exposure of some session keys should not

affect the security of other session keys.

EstablishParty(,  , ): This query models

the adversary to register a password  on

behalf of a client . In this way the adversary

totally controls that client. Clients against whom

the adversary did not issue this query are called

honest.

Test(

): This query provides a means of

defining security of session keys. The output of this

query depends on the hidden bit  chosen uniformly

at random from . The Test oracle returns the

real session key held by 

 if   , or returns a

random key drawn from the session-key space if

  . The adversary is allowed to access the Test

oracle only once.

TestPassword(,  ′): This query provides a

means of defining security of passwords. If the

password guess  ′ is the same as the client 

’s real password , then return 1. Otherwise,

return 0. The adversary can make TestPassword

query only once.

3. Partnership

Loosely stated, two instances are partners of each

other if they participate together in a protocol

execution and share a session key as a result of the

execution. The notion of partners is used in the

definition of security to disallow the adversary to

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석 97

ask the Test query against an instance whose

partner instance has already been asked for the

session key (with a SessionKeyReveal query),

ephemeral keys (with an EphemeralKeyReveal

query), or long-term keys (with a Long-termKeyReveal

query). It is thus important to define partnership

correctly. An error in the partnership definition may

render a protocol insecure (in the proof model used)

when there is no known attack on the protocol (for a

concrete example, see the work by Choo et al. [19]).

Let the session identifier () of an instance be

a function of the messages sent and received by the

instance during its execution. Zhao and Gu follow

the recent practice of relying on the notion of s

to define partnership between instances. According

to their definition of partnership, two instances 


and  ′ (with ≠ ′) are said to be partnered

if the following conditions hold: (1) both 

 and

 ′ have accepted, (2) 

 and  ′ have

computed the same , (3) the partner identifier

for 

 is  ′ and vice versa, and (4) no instance

besides 

 and  ′ has accepted with a partner

identifier equal to 

 and  ′ . When an instance



 accepts, it holds a session key, a session

identifier, and a partner identifier.

4. Security Definition

Definition of security is based on the notion of

freshness. Intuitively, a fresh instance is an instance

which holds a session key about which the adversary

should not know. More precisely:

Definition 1 (freshness). Let 

 be an instance

who has accepted and let  ′ be 

’s partner

instance (if it exists). An instance 

 is considered

fresh if none of the following conditions hold:

The adversary reveals the session key of the

instance 

 or its partner instance  ′ .

The adversary asks neither SendClient(

,

) nor SendClient( ′ , ′) query. Then

the adversary either makes queries:

EphemeralKeyReveal(

) or

EphemeralKeyReveal( ′)

The adversary asks SendClient( ′ , ′)
query. Then the adversary either makes queries:

Long-termKeyReveal(),

Long-termKeyReveal(),

EphemeralKeyReveal(

) for any session  or

EphemeralKeyReveal( ′).

The adversary asks SendClient(

, )

query. Then the adversary either makes queries:

Long-termKeyReveal( ′),
Long-termKeyReveal(),

EphemeralKeyReveal(

) or

EphemeralKeyReveal( ′) for any session .

In this definition of freshness, all the queries for

 ′ are defined if  ′ exists.

The security of a protocol  against an adversary

 is defined in terms of the probability that 

succeeds in distinguishing a real session key

established in an execution of  from a random

session key. That is, the adversary  is considered

successful in attacking  if it breaks the semantic

security of session keys generated by . More

precisely, the security is defined in the following

context. The adversary  executes the protocol

exploiting as much parallelism as possible and

asking any queries allowed in the adversarial model.

During executions of the protocol, the adversary ,

at any time, asks a Test query to a fresh instance,

gets back a key as the response to this query, and at

some later point in time, outputs a bit ′ as a guess

for the value of the hidden bit  used by the Test

oracle. Then the advantage of  in attacking protocol

98 Journal of The Korea Society of Computer and Information September 2012

Query Response

1 Execute(


, 

, 


) Transcript:  ,  ,  , 

2 EphemeralKeyReveal(

) 〈〉

3 SendClient(


, start:)  ′ 〈 ′ ′ ′′′ 〉
4 SendServer(


,  ′)

5 SendServer(

, )  〈 ′′〉

 〈 ′′ ′ ′′〉
6 SendClient(


, ) (accept)

7 Test(


) 


 or a random key

Table 1. The Sequence of Oracle Queries

 is denoted by  , and is defined as

      ′   .
Let   denote the maximum value of

  over all  with time complexity at most

 and asking at most  queries. Then, protocol  is

said to be AKE-secure if   is only

negligibly larger than , where  is a

constant and  is the number of SendClient/

SendServer queries. This notion of security is

commonly termed as “AKE security”.

IV. Breaking AKE Security

In this section, we break the AKE security of

Zhao and Gu’s key exchange protocol. The security

model described in the previous section allows the

adversary to ask EphemeralKeyReveal queries. The

EphemeralKeyReveal oracle is allowed to check that

the protocol is secure against strong corruption. In

other words, the EphemeralKeyReveal oracle call

captures the idea that exposure of ephemeral secrets

of a session should not affect the security of other

sessions. Hence, a key exchange protocol proven

secure in a model that allows EphemeralKeyReveal

queries ought to be secure against an adversary who

tries to break the security of a session by exploiting

ephemeral secrets obtained from some other

sessions. Zhao and Gu’s protocol carries a claimed

proof of its AKE security, but as we will see below,

it does not provide security against strong

corruption. This implies that their security proof is

flawed.

The vulnerability of Zhao and Gu’s protocol

against strong corruption is attributed to the fact

that clients’ messages  〈
〉 and  〈〉

can replayed without being detected by the server.

Our attack starts from this observation. Let 

be an honest protocol session where  and 

established a session key as per protocol

specification. Suppose now that a malicious

adversary  eavesdropped the message  sent by 

to  in the protocol session  . Suppose also

that the adversary  obtained the ephemeral

secrets - ,  and  - which  used in the

session  . As also stated in the definition

of EphemeralKeyReveal oracle, this leakage of

the ephemeral secrets can be justified under

the assumption that  has the capability to

embed a Trojan horse or other form of

malicious code into  ’s machine and then log

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석 99

all the session-specific information of . With ,

 and  in hand,  can easily impersonate

 to  as follows:

 initiates a new session with  as if the

initiation message is from  .

Next,  sends the message  〈
〉(eavesdropped in the previous

session ) to  alleging that the message is

from  .

 then intercepts the message sent by  to 

for this new session.

Finally, using ,  and , the adversary 

computes the same session key as that of  .

This allows  to impersonate  to  .

The above attack on Zhao and Gu’s protocol is

well captured in the adversarial model. Let again

 and  denote two registered clients and  also

be any registered client other than  and  . Table

1 shows the sequence of oracle queries corresponding

to the attack scenario described above. The goal of

the adversary  is to break the AKE security of

Zhao and Gu’s protocol.  begins by letting  and

 execute the protocol together by asking Execute

(


, 

, 


). As a result,  obtains the

message  〈 〉 from  to

 . Then  asks EphemeralKeyReveal(

) to

obtain all the ephemeral secrets 〈〉

used by instance 

. Now  asks SendClient

(


, start:) which prompts instance 


 to

initiate the protocol with client  . In response to

this query, 


 will output the message

 ′ 〈 ′′′′′ 〉. The

next queries  makes correspond to an honest

execution of the protocol among 


, 


(impersonated by ) and 

. Hence, the rest of

the queries are straightforward:  asks

SendServer(

, 〈 ′′′′′ 〉)

and SendServer(

, 〈

〉), and then, as 

 responds to the queries,

asks SendClient(
 ,  〈 ′′〉).

Notice that  replays the message  obtained

from 

. When 


 is sent the query SendClient

(


, 〈 ′′〉), it accepts

with the session key 


 being computed as


 , where    

 ′,

  
 ′

,   
 ′ ′ and  

 ′ ′. It

can be easily verified that the instance 


 is fresh

under Definition 1; (1) no one in { ,  , } has

been sent a Corrupt query, (2) no Reveal query has

been made against any instance, and (3) the query

EphemeralKeyReveal(

) has been asked before

the SendClient queries to 


 have been asked.

Thus,  may test (i.e., ask the Test query against)

the instance 


.  is able to compute 


 on

its own since it knows the values of the exponents

, ,  used to compute ,  and  . This

means that    ′    and hence

   . Therefore,  achieves its goal of

breaking the AKE security of Zhao and Gu’s

protocol.

Generally speaking, it is desirable that ephemeral

secrets exposed in a session should not jeopardize

the session-key secrecy of any other sessions. For

this reason, key exchange protocols proven

AKE-secure in a model that allows strong corruption

ought to be resistant against any attacks similar to

ours. Our attack shows that the proof of security for

Zhao and Gu’s protocol is invalid. The problem with

the proof is that the result of EphemeralKeyReveal

queries was not adequately considered in the

simulation.

100 Journal of The Korea Society of Computer and Information September 2012

V. Conclusion

This work has considered the security of Zhao and

Gu’s three-party protocol [14] for password

authenticated key exchange. Although Zhao and Gu’s

protocol comes along with a claimed proof of its

security, we have shown that the protocol is not

secure against strong corruption in the context of

the proof model. This vulnerability, however, is not

just a failure of Zhao and Gu’s protocol but it is an

inherent limitation of all three-party protocols that

do not require the server to verify the freshness of

incoming messages. Thus, there is no quick tweak

we can apply to make Zhao and Gu’s protocol

resistant to strong corruption. Moreover, it is not

clear how to make the protocol achieve any form of

provable security.

참고문헌

[1] S. Bellovin and M. Merritt, “Encrypted key

exchange: password-based protocols secure

against dictionary attacks,” in Proceedings of

IEEE Symposium on Research in Security and

Privacy, pp. 72-84, 1992.

[2] M. Bellare, D. Pointcheval, and P. Rogaway,

“Authenticated key exchange secure against

dictionary attacks,” in Proceedings of Eurocrypt’

00, LNCS vol. 1807, pp. 139-155, 2000.

[3] V. Boyko, P. MacKenzie, and S. Patel, “Provably

secure password-authenticated key exchange

using Diffie-Hellman,” in Proceedings of Eurocrypt’

00, LNCS vol. 1807, pp. 156-171, 2000.

[4] M. Zhang, “New approaches to password authenticated

key exchange based on RSA,” in Proceedings of

Asiacrypt’04, LNCS vol. 3329, pp. 230-244, 2004.

[5] M. Abdalla and D. Pointcheval, “Simple password-

based encrypted key exchange protocols,” in

Proceedings of CT-RSA’05, LNCS vol. 3376, pp.

191-208, 2005.

[6] J. Katz, R. Ostrovsky, and M. Yung, “Efficient

and secure authenticated key exchange using

weak passwords,” Journal of the ACM, vol. 57,

no. 1, pp. 78-116, 2009.

[7] J. Katz and V. Vaikuntanathan, “Round-optimal

password-based authenticated key exchange,” in

Proceedings of TCC’11, LNCS vol. 6597, pp.

293-310, 2011.

[8] M. Steiner, G. Tsudik, and M. Waidner,

“Refinement and extension of encrypted key

exchange,” ACM SIGOPS Operating Systems

Review, vol. 29, no. 3, pp. 22-30, 1995.

[9] C. Lin, H. Sun, and T. Hwang, “Three-party

encrypted key exchange: attacks and a solution,”

ACM SIGOPS Operating Systems Review, vol.

34, no. 4, pp. 12-20, 2000.

[10] M. Abdalla, P. Fouque, and D. Pointcheval,

“Password-based authenticated key exchange in

the three-party setting,” in Proceedings of

PKC’05, LNCS vol. 3386, pp. 65-84, 2005.

[11] R. Lu, Z. Cao, “Simple three-party key exchange

protocol,” Computers & Security,

vol. 26, no. 1, pp. 94-97, 2007.

[12] K. Yoneyama, “Efficient and strongly secure

password-based server aided key exchange,” in

Proceedings of Indocrypt’08, LNCS vol. 5365,

pp. 172-184, 2008.

[13] J. Steiner, C. Newman, and J. Schiller,

“Kerberos: an authentication service for open

network systems,” in Proceedings of 1998

USENIX Winter Conference, pp. 191-202, 1998.

[14] J. Zhao and D. Gu, “Provably secure three-party

password-based authenticated key exchange

protocol,” Information Sciences, vol. 184, no. 1,

pp. 310-323, 2012.

[15] D. Cash, E. Kiltz, and V. Shoup, “The twin

Diffie-Hellman problem and applications,” in

Proceedings of Eurocrypt’08, LNCS vol. 4965,

pp. 127-145, 2008.

[16] M. Bellare and P. Rogaway, “Random oracles

are practical: A paradigm for designing efficient

protocols,” in Proceedings of 1st ACM

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석 101

남 정 현

1997 : 성균관대학교 정보공학과 공학사

2002 : University of Louisiana,

Lafayette, Computer Science, MS.

2006 : 성균관대학교

컴퓨터공학과 공학박사

현 재 : 건국대학교 컴퓨터공학과 부교수

관심분야 : 컴퓨터보안, 암호학

Email : jhnam@kku.ac.kr

백 주 련

1997 : 성균관대학교 정보공학과 공학사

2005 : 성균관대학교

컴퓨터공학과 공학석사

2008 : 성균관대학교

컴퓨터공학과 공학박사

현 재 : 성균관대학교

컴퓨터공학과 연구교수

관심분야 : 트리 마이닝, 지식정보검색,

유사성 검색

Email : wise96@ece.skku.ac.kr

Conference on Computer and Communications

Security, pp. 62-73, 1993.

[17] R. Canetti and H. Krawczyk, “Analysis of

key-exchange protocols and their use for

building secure channels,” in Proceedings of

Eurocrypt’01, LNCS vol. 2045, pp. 453-474, 2001.

[18] J. Nam, J. Paik, U. Kim, and D. Won,

“Resource-aware protocols for authenticated

group key exchange in integrated wired and

wireless networks,” Information Sciences, vol.

177, no. 23, pp. 5441-5467, 2007.

[19] K. Choo, C. Boyd, Y. Hitchcock, and G.

Maitland, “On session identifiers in provably

secure protocols,” in Proceedings of 4th

Conference on Security in Communication

Networks, LNCS vol. 3352, pp. 351-366, 2005.

저 자 소 개

이 영 숙

1987 : 성균관대학교 정보공학과 공학사

2005 : 성균관대학교

정보보호학과 공학석사

2008 : 성균관대학교

컴퓨터공학과 공학박사

2010~2011.6 :

호원대학교 기획조정처 경영평가 실장

현 재 : 호원대학교

사이버수사경찰학부 학부장

관심분야 : 암호프로토콜, 네트워크 보안,

스마트폰 보안, 디지털포렌식

Email : ysooklee@howon.ac.kr

원 동 호

1976~1988 :

성균관대학교 전자공학과 공학사, 석사, 박사

1978~1980 :

한국전자통신연구원 전임연구원

1985~1986 :

일본 동경공업대 객원연구원

1988~2003:

성균관대학교 교학처장, 전기전자 및

컴퓨터공학부장, 정보통신대학원장,

정보통신기술연구소장, 연구처장

1996~1998:

국무총리실 정보화추진위원회 자문위원

2002~2003: 한국정보보호학회장

2002~2008:

대검찰청 컴퓨터범죄수사자문위원,

감사원 IT감사자문위원

현 재: 성균관대학교 컴퓨터공학과 교수,

BK21 사업단장,

한국정보보호학회 명예회장

관심분야 : 암호이론, 정보이론, 정보보호

Email : dhwon@security.re.kr

