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요  약

키 교환 프로토콜은 공개 네트워크상에서 안전한 통신 채널을 구축하는데 필수적인 요소이다. 특히, 패스워드 

기반 키 교환 프로토콜에서는 패스워드를 이용하여 사용자 인증이 이루어지며 이를 바탕으로 안전하게 키 교환이 

이루어지도록 설계되어야 한다. 그러나 패스워드는 인간이 쉽게 기억할 수 있는 반면에 엔트로피가 낮고 따라서 사

전공격에 쉽게 노출될 수 있다. 최근, Zhao와 Gu가 서버의 도움을 필요로 하는 새로운 패스워드 기반 키 교환 프

로토콜을 제안하였다. Zhao와 Gu가 제안한 프로토콜은 일회성 비밀키의 노출 상황을 고려하는 공격자 모델에서도 

안전성이 증명가능하다고 주장하였다. 본 논문에서는 Zhao와 Gu의 프로토콜에 대한 재전송 공격을 통하여 이 프

로토콜이 저자들의 주장과 달리 일회성 비밀키의 노출 시에 안전하지 않다는 것을 보일 것이다. 본 연구 결과는 

Zhao와 Gu가 제시한 안전성 증명이 성립하지 않음을 의미한다.

▸Keywords :  안전성, 키 교환 프로토콜, 패스워드, 공격

Abstract

Key exchange protocols are essential for building a secure communication channel over an 

insecure open network. In particular, password-based key exchange protocols are designed to work  

when user authentication is done via the use of passwords. But, passwords are easy for human 

beings to remember, but are low entropy and thus are subject to dictionary attacks. Recently, Zhao 
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and Gu proposed a new server-aided protocol for password-based key exchange. Zhao and Gu’s 

protocol was claimed to be provably secure in a formal adversarial model which captures the notion 

of leakage of ephemeral secret keys. In this paper, we mount a replay attack on Zhao and Gu’s 

protocol and thereby show that unlike the claim of provable security, the protocol is not secure 

against leakage of ephemeral secret keys. Our result implies that Zhao and Gu’s proof of security 

for the protocol is invalid.

▸Keywords :Security, Key exchange protocol, Password, Attack

I. Introduction

Key exchange protocols are designed to allow two 

or more parties to establish a common secret key 

over a public network. This secret key, commonly 

called a session key, is then typically used to build 

confidential or integrity-protected communication 

channel between the parties. The highest priority in 

designing a key exchange protocol is placed on 

ensuring the security of session keys to be 

established by the protocol. Roughly speaking, 

establishing a session key securely means that the 

key is being known only to the intended parties at 

the end of the protocol run. But unfortunately, the 

experience has shown that the design of secure key 

exchange protocols is notoriously difficult. Thus, key 

exchange protocols must be subjected to a thorough 

and systematic scrutiny before they are deployed 

into a public network, which might be controlled by 

an adversary.

Secure session-key generation requires an 

authentication mechanism to be integrated into key 

exchange protocols. In turn, achieving any form of 

authentication inevitably requires some secret 

information to be established between users in 

advance of the authentication stage. Cryptographic 

keys, either secret keys for symmetric cryptography 

or private/public keys for asymmetric cryptography, 

may be one form of the underlying secret 

information pre-established between users. However, 

these high-entropy cryptographic keys are random in 

appearance and thus are difficult for humans to 

remember, entailing a significant amount of 

administrative work and costs. Eventually, it is this 

drawback that password-based authentication has 

come to be widely used in reality. Passwords are 

drawn from a relatively small space like a 

dictionary, and are easier for humans to remember 

than cryptographic keys with high entropy.

Bellovin and Merritt [1] was the first to consider 

how two parties, who only share a weak, 

low-entropy password, and who are communicating 

over a public network, authenticate each other and 

agree on a high-entropy cryptographic key to be 

used for protecting their subsequent communication. 

Their protocol, known as encrypted key exchange, or 

EKE, was a great success in showing how one can 

exchange password authenticated information while 

protecting poorly-chosen passwords from the 

notorious password guessing attacks. Due in large 

part to the practical significance of password-based 

authentication, this initial work has been followed by 

a number of two-party protocols (e.g., [2][3][4][5]

[6][7]) offering various levels of security and 

complexity.

While two-party protocols for password-authenticated 

key exchange (PAKE) are well suited for client-server 

architectures, they are inconvenient and costly for 

use in large scale peer-to-peer systems. Since two-party 

PAKE protocols require each pair of potential 

communication parties to share a password, a large 

number of parties result in an even larger number of 

passwords to be shared. It is due to this problem 

that three-party models have been often used in 
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Fig. 1. Zhao and Gu’s Three-Party PAKE Protocol
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designing PAKE protocols (e.g., [8][9][10][11][12]). 

In a typical three-party setting, each party (often 

called client) does not need to remember and 

manage multiple passwords, but shares only a single 

password with a trusted server who then assists 

clients in establishing a session key by providing 

authentication services to them. However, this 

convenience comes at the price of clients’ trust in 

the server. Despite this drawback, the three-party 

model offers an effective, realistic solution to the 

problem of session key exchange in large 

peer-to-peer systems, and in fact is assumed by the 

popular Kerberos authentication system [13].

Recently, Zhao and Gu [14] proposed a 

three-party PAKE protocol making use of the 

trapdoor test technique introduced by Cash, Kiltz, 

and Shoup [15]. Zhao and Gu’s protocol was claimed 

to be provably secure under the assumption that the 

hash functions used in the protocol are random 

oracles. The adversarial model, where security of the 

protocol is proven, captures the notion of strong 

corruption by allowing the adversary to ask  

EphemeralKeyReveal queries. An EphemeralKeyReveal 

query against a user instance outputs all the 

ephemeral secrets used by the instance during the 

protocol execution. Allowing an adversary to ask  

EphemeralKeyReveal queries models the adversary’s 

capability to embed a Trojan horse or other form of 

malicious code into a user’s machine and then obtain 

all the session-specific information of the victim. 

Since Zhao and Gu’s protocol is proven secure in a 

model that allows EphemeralKeyReveal queries, it 

should be secure against strong corruption. But 

what we found is the opposite: Zhao and Gu’s 

protocol does not exhibit resistance against strong 

corruption. Indeed, Zhao and Gu’s protocol is 

vulnerable to a replay attack where the adversary 

asks an EphemeralKeyReveal query in its attack. 

We here reveal this security vulnerability of Zhao 

and Gu’s protocol. Our result invalidates the claimed 

proof of security for the protocol.

II. Review of Zhao and Gu’s Protocol

This section describes the three-party PAKE 

protocol proposed by Zhao and Gu [14]. The protocol 

participants consist of a single server   and two 

clients   and  . The clients   and   wish to 

establish a session key between them while the 

server   exists to provide the clients with 

authentication services. We denote by  ,   

and   the identities of  ,   and  , respectively. 

Let   and   be the passwords of   and 

 , respectively. Each client’s password is assumed 

to be shared with the authentication server   via a 

secure channel. The followings are the public system 

parameters used in the protocol.

Two large primes  and  with  , and a 

generator   of group   of order .

A pair of symmetric encryption/decryption algorithms 

(, ) modeled as an ideal cipher [2].

Three hash functions ,  and   modeled as 

random oracles [16].  and  map  to 



 while   maps  to  , where  is a 

security parameter representing the length of 

session keys.

Once ,  and   are fixed, the server   

generates its long-term private/public keys  

such that ∈ and   . A high-level 

depiction of the protocol is given in Fig. 1, and a 

more detailed description follows:

Client   chooses random ∈ and computes 

  
 and   

. Then   verifies if  lies 

in . If not,   aborts. Otherwise,   computes 

  ,   

,   




 , and   , 

where   is a random value. Finally,   deletes the 

ephemeral secret  and sends  〈 
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〉 to  .

Similarly,   chooses random ∈ and 

computes   
 and   

. Then   verifies 

if  lies in  . If not,   aborts. Otherwise,   

computes    ,    , 

   


   and 

   , where  is a random 

value. Finally,   deletes  and sends 

 〈〉 to  .

Upon receiving   and  , the server   

verifies if all of  , , ,  ,  and  lie in 

 . If not,   aborts. Otherwise,   computes 

′     and 

′      by using 

its private key . Then   performs the decryptions 

′′  ′  and ′′  ′  
and verifies that  ′    and 

 ′   . If  ′ ≠  or 

 ′ ≠ , then   aborts. Otherwise,   

computes   ′  
and sends  〈〉 to 

 , where   is a random value chosen by  . 

Similarly,   computes   ′  
and sends  〈〉 to 

 , where   is a random value chosen by  . At 

last,   deletes the session-specific information: 

′′ ′ ′.

After receiving  ,   checks if (1)  ,  

and  lie in   and (2)    

 . If any of these are untrue,   

aborts. Otherwise,   computes   

 ,   

,   


,   

   

and   
 . Finally,   defines the session 

ID     

and computes the session key   

.

Similarly, on receiving ,   checks if (1)  , 

 and  lie in   and (2) 

   . If 

any of these are untrue,   aborts. Otherwise,   

computes     ,   
 , 

  
 ,   


 and   


. 

Finally,   defines the session ID 

    and 

computes the session key    .

III. Adversarial Model

Zhao and Gu’s protocol comes along with a 

claimed proof of its security in a formal model of 

adversarial capabilities. The adversarial model that 

they used is the one of Yoneyama [12] and captures 

security against strong corruption [2][17][18]. Here 

we provide an overview of the adversarial model as a 

preliminary step towards mounting an ephemeral-

key reveal attack against the protocol. 

1. Participants

Each participant   in a three-party key 

exchange is either a client  or the trusted server 

 . Each   may run the protocol multiple times 

either serially or concurrently, with possibly 

different participants. Thus, at a given time, there 

could be many instances of a single client and the 

server. 


 denotes instance  of a participant  . 

An instance 


 is said to accept when it computes 

a valid session key 


. During the initialization 

phase of the protocol, the server   generates its 

long-term private/public key pair (,    ) and 

each client  chooses a password  as their 

long-term secret key and shares it with  . 
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Passwords are drawn from a dictionary  .

2. Adversary

The adversary is in complete control of every 

aspect of all communications between participants, 

and may ask, at any time, them to open up access to 

their long-term secret keys. These capabilities and 

others of the adversary are modeled via various 

oracles to which the adversary is allowed to make 

queries.

Execute(

,  ′ , 


): This query prompts 

an honest execution of the protocol among the client 

instances 

 and  ′  and the server instance 



. The transcript of the honest execution is 

returned to the adversary as the output of the 

query. This oracle call represents passive 

eavesdropping of a protocol execution.

SendClient(

, ): This query sends 

message   to the client instance 

. The 

instance 

 proceeds as it would in the protocol 

upon receiving  . The response message 

generated by 

, if any, is the output of this query 

and is returned to the adversary. A query of the 

form  SendClient(

, start: ′) prompts 


 to 

initiate the protocol with a client  ′ (≠).

SendServer(

, ): This query sends 

message   to the server instance 

. The 

instance 

 proceeds as it would in the protocol 

upon receiving  . The response message 

generated by 

, if any, is the output of this query 

and is returned to the adversary.

Long-termKeyReveal( ): This query outputs the 

long-term secret key of  . This oracle call captures 

the idea that damage due to loss of  ’s long-term 

key should be restricted to those sessions where 
will participate in the future.

EphemeralKeyReveal(


): This query returns 

all short-term secrets used by instance 


. This 

models the adversary’s capability to embed a Trojan 

horse or other form of malicious code into a user’s 

machine and then obtain all the session-specific 

information of the victim.

SessionKeyReveal(

): This query returns the 

session key 

 held by instance 


, modeling 

leakage of session keys. This oracle call captures the 

idea that exposure of some session keys should not 

affect the security of other session keys.

EstablishParty(,  , ): This query models 

the adversary to register a password  on 

behalf of a client . In this way the adversary 

totally controls that client. Clients against whom 

the adversary did not issue this query are called 

honest.

Test(

): This query provides a means of 

defining security of session keys. The output of this 

query depends on the hidden bit  chosen uniformly 

at random from . The Test oracle returns the 

real session key held by 

 if   , or returns a 

random key drawn from the session-key space if 

  . The adversary is allowed to access the Test 

oracle only once. 

TestPassword(,  ′): This query provides a 

means of defining security of passwords. If the 

password guess  ′ is the same as the client  

’s real password , then return 1. Otherwise, 

return 0. The adversary can make TestPassword 

query only once.

3. Partnership

Loosely stated, two instances are partners of each 

other if they participate together in a protocol 

execution and share a session key as a result of the 

execution. The notion of partners is used in the 

definition of security to disallow the adversary to 
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ask the Test query against an instance whose 

partner instance has already been asked for the 

session key (with a SessionKeyReveal query), 

ephemeral keys (with an EphemeralKeyReveal 

query), or long-term keys (with a Long-termKeyReveal 

query). It is thus important to define partnership 

correctly. An error in the partnership definition may 

render a protocol insecure (in the proof model used) 

when there is no known attack on the protocol (for a 

concrete example, see the work by Choo et al. [19]).

Let the session identifier () of an instance be 

a function of the messages sent and received by the 

instance during its execution. Zhao and Gu follow 

the recent practice of relying on the notion of s 

to define partnership between instances. According 

to their definition of partnership, two instances 

 

and  ′  (with ≠ ′) are said to be partnered 

if the following conditions hold: (1) both 

 and 

 ′  have accepted, (2) 

 and  ′  have 

computed the same , (3) the partner identifier 

for 

 is  ′  and vice versa, and (4) no instance 

besides 

 and  ′  has accepted with a partner 

identifier equal to 

 and  ′ . When an instance 



 accepts, it holds a session key, a session 

identifier, and a partner identifier.

4. Security Definition

Definition of security is based on the notion of 

freshness. Intuitively, a fresh instance is an instance 

which holds a session key about which the adversary 

should not know. More precisely:

Definition 1 (freshness). Let 

 be an instance 

who has accepted and let  ′  be 

’s partner 

instance (if it exists). An instance 

 is considered 

fresh if none of the following conditions hold:

The adversary reveals the session key of the 

instance 

 or its partner instance  ′ .

The adversary asks neither SendClient(

, 

) nor SendClient( ′ , ′) query. Then 

the adversary either makes queries:

EphemeralKeyReveal(

) or

EphemeralKeyReveal( ′ )

The adversary asks SendClient( ′ , ′) 
query. Then the adversary either makes queries:

Long-termKeyReveal(),

Long-termKeyReveal(),

EphemeralKeyReveal(

) for any session  or

EphemeralKeyReveal( ′ ).

The adversary asks SendClient(

, ) 

query. Then the adversary either makes queries: 

Long-termKeyReveal( ′),
Long-termKeyReveal(),

EphemeralKeyReveal(

) or

EphemeralKeyReveal( ′ ) for any session .

In this definition of freshness, all the queries for 

 ′  are defined if  ′  exists.

The security of a protocol  against an adversary 

 is defined in terms of the probability that  

succeeds in distinguishing a real session key 

established in an execution of  from a random 

session key. That is, the adversary  is considered 

successful in attacking  if it breaks the semantic 

security of session keys generated by . More 

precisely, the security is defined in the following 

context. The adversary  executes the protocol 

exploiting as much parallelism as possible and 

asking any queries allowed in the adversarial model. 

During executions of the protocol, the adversary , 

at any time, asks a Test query to a fresh instance, 

gets back a key as the response to this query, and at 

some later point in time, outputs a bit ′ as a guess 

for the value of the hidden bit  used by the Test 

oracle. Then the advantage of  in attacking protocol 
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Query Response

1 Execute(


, 

, 


) Transcript:  ,   ,  , 

2 EphemeralKeyReveal(

) 〈〉

3 SendClient(


, start:)   ′ 〈 ′ ′ ′′′ 〉
4 SendServer(


,  ′ )

5 SendServer(

, )  〈 ′′〉

 〈 ′′ ′ ′′〉
6 SendClient(


,  ) (accept)

7 Test(


) 


 or a random key

Table 1. The Sequence of Oracle Queries

 is denoted by  , and is defined as

      ′   .
Let   denote the maximum value of 

  over all  with time complexity at most 

 and asking at most   queries. Then, protocol  is 

said to be AKE-secure if   is only 

negligibly larger than , where  is a 

constant and  is the number of SendClient/

SendServer queries. This notion of security is 

commonly termed as “AKE security”.

IV. Breaking AKE Security

In this section, we break the AKE security of 

Zhao and Gu’s key exchange protocol. The security 

model described in the previous section allows the 

adversary to ask EphemeralKeyReveal queries. The 

EphemeralKeyReveal oracle is allowed to check that 

the protocol is secure against strong corruption. In 

other words, the EphemeralKeyReveal oracle call 

captures the idea that exposure of ephemeral secrets 

of a session should not affect the security of other 

sessions. Hence, a key exchange protocol proven 

secure in a model that allows EphemeralKeyReveal 

queries ought to be secure against an adversary who 

tries to break the security of a session by exploiting 

ephemeral secrets obtained from some other 

sessions. Zhao and Gu’s protocol carries a claimed 

proof of its AKE security, but as we will see below, 

it does not provide security against strong 

corruption. This implies that their security proof is 

flawed.

The vulnerability of Zhao and Gu’s protocol 

against strong corruption is attributed to the fact 

that clients’ messages  〈
〉 and  〈〉 

can replayed without being detected by the server. 

Our attack starts from this observation. Let   

be an honest protocol session where   and   

established a session key as per protocol 

specification. Suppose now that a malicious 

adversary  eavesdropped the message  sent by 

to  in the protocol session  . Suppose also 

that the adversary  obtained the ephemeral 

secrets - ,  and  - which  used in the 

session  . As also stated in the definition 

of EphemeralKeyReveal oracle, this leakage of 

the ephemeral secrets can be justified under 

the assumption that  has the capability to 

embed a Trojan horse or other form of 

malicious code into  ’s machine and then log 
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all the session-specific information of . With , 

 and  in hand,  can easily impersonate 

  to   as follows:

 initiates a new session with   as if the 

initiation message is from  .

Next,  sends the message  〈 
〉(eavesdropped in the previous 

session ) to   alleging that the message is 

from  .

 then intercepts the message sent by   to   

for this new session.

Finally, using ,  and , the adversary  

computes the same session key as that of  .

This allows  to impersonate   to  .

The above attack on Zhao and Gu’s protocol is 

well captured in the adversarial model.  Let again 

  and   denote two registered clients and   also 

be any registered client other than   and  . Table 

1 shows the sequence of oracle queries corresponding 

to the attack scenario described above. The goal of 

the adversary  is to break the AKE security of 

Zhao and Gu’s protocol.  begins by letting   and 

  execute the protocol together by asking Execute

(


, 

, 


). As a result,  obtains the 

message  〈 〉 from   to 

 . Then  asks EphemeralKeyReveal(

) to 

obtain all the ephemeral  secrets 〈〉 

used by instance 

. Now  asks  SendClient

(


, start:) which prompts instance 


 to 

initiate the protocol with client  . In response to 

this query, 


 will output the message 

 ′ 〈 ′′′′′ 〉. The 

next queries  makes correspond to an honest 

execution of the protocol among 


, 

 

(impersonated by ) and 

. Hence, the rest of 

the queries are straightforward:  asks 

SendServer(

, 〈 ′′′′′ 〉) 

and SendServer(

, 〈

〉), and then, as 

 responds to the queries, 

asks SendClient(
 ,  〈 ′′〉). 

Notice that  replays the message   obtained 

from 

. When 


 is sent the query SendClient

(


, 〈 ′′〉), it accepts 

with the session key 


 being computed as 


 , where     

 ′, 

  
 ′

,   
 ′ ′ and  

 ′ ′. It 

can be easily verified that the instance 


 is fresh 

under Definition 1; (1) no one in { ,  , } has 

been sent a Corrupt query, (2) no Reveal query has 

been made against any instance, and (3) the query 

EphemeralKeyReveal(

) has been asked before 

the SendClient queries to 


 have been asked. 

Thus,  may test (i.e., ask the Test query against) 

the instance 


.  is able to compute 


 on 

its own since it knows the values of the exponents 

, ,  used to compute ,  and  . This 

means that    ′    and hence 

   .  Therefore,  achieves its goal of 

breaking the AKE security of Zhao and Gu’s 

protocol.

Generally speaking, it is desirable that ephemeral 

secrets exposed in a session should not jeopardize 

the session-key secrecy of any other sessions. For 

this reason, key exchange protocols proven 

AKE-secure in a model that allows strong corruption 

ought to be resistant against any attacks similar to 

ours. Our attack shows that the proof of security for 

Zhao and Gu’s protocol is invalid. The problem with 

the proof is that the result of EphemeralKeyReveal 

queries was not adequately considered in the 

simulation.
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V. Conclusion

This work has considered the security of Zhao and 

Gu’s three-party protocol [14] for password 

authenticated key exchange. Although Zhao and Gu’s 

protocol comes along with a claimed proof of its 

security, we have shown that the protocol is not 

secure against strong corruption in the context of 

the proof model. This vulnerability, however, is not 

just a failure of Zhao and Gu’s protocol but it is an 

inherent limitation of all three-party protocols that 

do not require the server to verify the freshness of 

incoming messages. Thus, there is no quick tweak 

we can apply to make Zhao and Gu’s protocol 

resistant to strong corruption. Moreover, it is not 

clear how to make the protocol achieve any form of 

provable security.
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