• Title/Summary/Keyword: adversarial network

Search Result 286, Processing Time 0.023 seconds

Optimizing SR-GAN for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation

  • Sajid Hussain;Jung-Hun Shin;Kum-Won Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.479-481
    • /
    • 2023
  • Generative Adversarial Networks (GANs) have facilitated substantial improvement in single-image super-resolution (SR) by enabling the generation of photo-realistic images. However, the high memory requirements of GAN-based SRs (mainly generators) lead to reduced performance and increased energy consumption, making it difficult to implement them onto resource-constricted devices. In this study, we propose an efficient and compressed architecture for the SR-GAN (generator) model using the model compression technique Knowledge Distillation. Our approach involves the transmission of knowledge from a heavy network to a lightweight one, which reduces the storage requirement of the model by 58% with also an increase in their performance. Experimental results on various benchmarks indicate that our proposed compressed model enhances performance with an increase in PSNR, SSIM, and image quality respectively for x4 super-resolution tasks.

Fall detection based on GAN and LSTM (적대적 생성 신경망과 장단기 메모리셀을 이용한 낙상 검출)

  • Hyojin Shin;Jiyoung Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.21-22
    • /
    • 2023
  • 본 논문에서는 낙상과 비낙상 구별을 위한 분류 모델을 제안한다. 일상생활과 낙상을 구분해 내는 것은 낙상이 발생하기 이전에 감지하고 사고를 예방할 수 있다. 낙상은 일상생활 중 일어나기 쉬우며, 노인들에게는 골절 및 기관 파열 등과 같은 심각한 부상을 초래할 수 있기 때문에 낙상 방지를 위한 낙상과 비낙상 행동의 구분은 중요한 문제이다. 따라서 실시간으로 수집되는 다양한 활동에서의 센서 데이터를 활용하여 낙상과 비낙상의 행동을 구분하였다.

  • PDF

Performance Comparison of Neural Network Models for Adversarial Attacks by Autonomous Ships (자율주행 선박의 적대적 공격에 대한 신경망 모델의 성능 비교)

  • Tae-Hoon Her;Ju-Hyeong Kim;Na-Hyun Kim;So-Yeon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1106-1107
    • /
    • 2023
  • 자율주행 선박의 기술 발전에 따라 적대적 공격에 대한 위험성이 대두되고 있다. 이를 해결하기 위해 본 연구는 다양한 신경망 모델을 활용하여 적대적 공격을 탐지하는 성능을 체계적으로 비교, 분석하였다. CNN, GRU, LSTM, VGG16 모델을 사용하여 실험을 진행하였고, 이 중 VGG16 모델이 가장 높은 탐지 성능을 보였다. 본 연구의 결과를 통해 자율주행 선박에 적용될 수 있는 보안모델 구축에 대한 신뢰성 있는 방향성을 제시하고자 한다.

Multiple Mixed Modes: Single-Channel Blind Image Separation

  • Tiantian Yin;Yina Guo;Ningning Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.858-869
    • /
    • 2023
  • As one of the pivotal techniques of image restoration, single-channel blind source separation (SCBSS) is capable of converting a visual-only image into multi-source images. However, image degradation often results from multiple mixing methods. Therefore, this paper introduces an innovative SCBSS algorithm to effectively separate source images from a composite image in various mixed modes. The cornerstone of this approach is a novel triple generative adversarial network (TriGAN), designed based on dual learning principles. The TriGAN redefines the discriminator's function to optimize the separation process. Extensive experiments have demonstrated the algorithm's capability to distinctly separate source images from a composite image in diverse mixed modes and to facilitate effective image restoration. The effectiveness of the proposed method is quantitatively supported by achieving an average peak signal-to-noise ratio exceeding 30 dB, and the average structural similarity index surpassing 0.95 across multiple datasets.

Research on Digital Construction Site Management Using Drone and Vision Processing Technology (드론 및 비전 프로세싱 기술을 활용한 디지털 건설현장 관리에 대한 연구)

  • Seo, Min Jo;Park, Kyung Kyu;Lee, Seung Been;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.239-240
    • /
    • 2023
  • Construction site management involves overseeing tasks from the construction phase to the maintenance stage, and digitalization of construction sites is necessary for digital construction site management. In this study, we aim to conduct research on object recognition at construction sites using drones. Images of construction sites captured by drones are reconstructed into BIM (Building Information Modeling) models, and objects are recognized after partially rendering the models using artificial intelligence. For the photorealistic rendering of the BIM models, both traditional filtering techniques and the generative adversarial network (GAN) model were used, while the YOLO (You Only Look Once) model was employed for object recognition. This study is expected to provide insights into the research direction of digital construction site management and help assess the potential and future value of introducing artificial intelligence in the construction industry.

  • PDF

Secure routing security algorithm S-ZRP used Zone Routing Protocol in MANET (MANET환경에서 Zone Routing Protocol을 이용한 안전한 경로설정 보안 알고리즘 S-ZRP)

  • Seo Dae-Youl;Kim Jin-Chul;Kim Kyoung-Mok;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.13-21
    • /
    • 2006
  • An mobile ad hoc network(MANET) is a collection of wireless computers (nodes), communicating among themselves over multi-hop paths, without the help of any infrastructure such as base stations or access points. Prior research in MANET has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we design and evaluate the Secure Zone Routing Protocol(T-ZRP), a secure ad hoc network routing protocol is based on the design of the hash chain. In order to support use with nodes of limited CPU processing capability, and to guard against Denial-of-Service attacks in which an attacker attempts to cause other nodes to consume excess network bandwidth or processing time, we use efficient one-way hash functions and don't use asymmetric cryptographic operations in the protocol. Proposed algorithm can safely send to data through authentication mechanism and integrity about routing establishment.

Traffic Data Generation Technique for Improving Network Attack Detection Using Deep Learning (네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구)

  • Lee, Wooho;Hahm, Jaegyoon;Jung, Hyun Mi;Jeong, Kimoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, various approaches to detect network attacks using machine learning have been studied and are being applied to detect new attacks and to increase precision. However, the machine learning method is dependent on feature extraction and takes a long time and complexity. It also has limitation of performace due to learning data imbalance. In this study, we propose a method to solve the degradation of classification performance due to imbalance of learning data among the limit points of detection system. To do this, we generate data using Generative Adversarial Networks (GANs) and propose a classification method using Convolutional Neural Networks (CNNs). Through this approach, we can confirm that the accuracy is improved when applied to the NSL-KDD and UNSW-NB15 datasets.

Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study

  • Phisamon Kengkard;Jirachaya Choovuthayakorn;Chollada Mahakkanukrauh;Nadee Chitapanarux;Pittayarat Intasuwan;Yanumart Malatong;Apichat Sinthubua;Patison Palee;Sakarat Na Lampang;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.86-93
    • /
    • 2023
  • Age at death estimation has always been a crucial yet challenging part of identification process in forensic field. The use of human skeletons have long been explored using the principle of macro and micro-architecture change in correlation with increasing age. The clavicle is recommended as the best candidate for accurate age estimation because of its accessibility, time to maturation and minimal effect from weight. Our study applies pre-trained convolutional neural network in order to achieve the most accurate and cost effective age estimation model using clavicular bone. The total of 988 clavicles of Thai population with known age and sex were radiographed using Kodak 9000 Extra-oral Imaging System. The radiographs then went through preprocessing protocol which include region of interest selection and quality assessment. Additional samples were generated using generative adversarial network. The total clavicular images used in this study were 3,999 which were then separated into training and test set, and the test set were subsequently categorized into 7 age groups. GoogLeNet was modified at two layers and fine tuned the parameters. The highest validation accuracy was 89.02% but the test set achieved only 30% accuracy. Our results show that the use of medial clavicular radiographs has a potential in the field of age at death estimation, thus, further study is recommended.

TCN-USAD for Anomaly Power Detection (이상 전력 탐지를 위한 TCN-USAD)

  • Hyeonseok Jin;Kyungbaek Kim
    • Smart Media Journal
    • /
    • v.13 no.7
    • /
    • pp.9-17
    • /
    • 2024
  • Due to the increase in energy consumption, and eco-friendly policies, there is a need for efficient energy consumption in buildings. Anomaly power detection based on deep learning are being used. Because of the difficulty in collecting anomaly data, anomaly detection is performed using reconstruction error with a Recurrent Neural Network(RNN) based autoencoder. However, there are some limitations such as the long time required to fully learn temporal features and its sensitivity to noise in the train data. To overcome these limitations, this paper proposes the TCN-USAD, combined with Temporal Convolution Network(TCN) and UnSupervised Anomaly Detection for multivariate data(USAD). The proposed model using TCN-based autoencoder and the USAD structure, which uses two decoders and adversarial training, to quickly learn temporal features and enable robust anomaly detection. To validate the performance of TCN-USAD, comparative experiments were performed using two building energy datasets. The results showed that the TCN-based autoencoder can perform faster and better reconstruction than RNN-based autoencoder. Furthermore, TCN-USAD achieved 20% improved F1-Score over other anomaly detection models, demonstrating excellent anomaly detection performance.

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.