• 제목/요약/키워드: adversarial attack

검색결과 66건 처리시간 0.022초

Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석 (A Security Analysis of Zhao and Gu's Key Exchange Protocol)

  • 남정현;백주련;이영숙;원동호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권9호
    • /
    • pp.91-101
    • /
    • 2012
  • 키 교환 프로토콜은 공개 네트워크상에서 안전한 통신 채널을 구축하는데 필수적인 요소이다. 특히, 패스워드 기반 키 교환 프로토콜에서는 패스워드를 이용하여 사용자 인증이 이루어지며 이를 바탕으로 안전하게 키 교환이 이루어지도록 설계되어야 한다. 그러나 패스워드는 인간이 쉽게 기억할 수 있는 반면에 엔트로피가 낮고 따라서 사전공격에 쉽게 노출될 수 있다. 최근, Zhao와 Gu가 서버의 도움을 필요로 하는 새로운 패스워드 기반 키 교환 프로토콜을 제안하였다. Zhao와 Gu가 제안한 프로토콜은 일회성 비밀키의 노출 상황을 고려하는 공격자 모델에서도 안전성이 증명가능하다고 주장하였다. 본 논문에서는 Zhao와 Gu의 프로토콜에 대한 재전송 공격을 통하여 이 프로토콜이 저자들의 주장과 달리 일회성 비밀키의 노출 시에 안전하지 않다는 것을 보일 것이다. 본 연구 결과는 Zhao와 Gu가 제시한 안전성 증명이 성립하지 않음을 의미한다.

우수관망 시공간 딥러닝 모델: (2) 모델 강건성 향상을 위한 연구 (Spatio-temporal deep learning model for urban drainage network: (2) Improving model's robustness)

  • 안유빈;권순호;정동휘
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.228-228
    • /
    • 2023
  • 국지적 지역에 내리는 강한 강도의 강우는 많은 인명 및 재산 피해를 발생시킨다. 이러한 피해를 예방하기 위해 도시 침수 예측에 관한 연구가 오랜 기간 수행되어 왔으며, 최근에는 다양한 신경망(neural network) 모델이 활발히 이용되고 있다. 강우 지속 기간이나 강도는 일정하지 않고, 공간적 특징 또한 도시마다 다르므로 안정적인 침수 예측을 위한 신경망 모델은 강건성(robustness)을 지녀야 한다. 강건한 신경망 모델이란 적대적 공격(adversarial attack)을 방어할 수 있는 능력을 갖춘 모델을 일컫는다. 따라서 본 연구에서는, 도시 침수 예측을 위한 시공간 신경망(spatio-temporal neural network) 모델의 강건성 제고를 위한 방법론을 제안한다. 먼저 적대적 공격의 유형과 방어 방법을 분류하고, 시공간 신경망 모델의 학습 데이터 특성 및 모델 구조구성 조건 등을 활용하여 최적의 강건성 제고 방안을 도출하였다. 해당 모델은 집중호우로 인해 나타날 다양한 관망에서의 침수 피해를 각각 예측하고 피해를 예방하기 위해 활용될 수 있다.

  • PDF

관계 추출에서 사전학습 언어모델의 방향성 예측 분석 (Directional Predictive Analysis of Pre-trained Language Models in Relation Extraction)

  • 허윤아;오동석;강명훈;손수현;소아람;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.482-485
    • /
    • 2021
  • 최근 지식 그래프를 확장하기 위해 많은 연구가 진행되고 있다. 지식 그래프를 확장하기 위해서는 relation을 기준으로 entity의 방향성을 고려하는 것이 매우 중요하다. 지식 그래프를 확장하기 위한 대표적인 연구인 관계 추출은 문장과 2개의 entity가 주어졌을 때 relation을 예측한다. 최근 사전학습 언어모델을 적용하여 관계 추출에서 높은 성능을 보이고 있지만, entity에 대한 방향성을 고려하여 relation을 예측하는지 알 수 없다. 본 논문에서는 관계 추출에서 entity의 방향성을 고려하여 relation을 예측하는지 실험하기 위해 문장 수준의 Adversarial Attack과 단어 수준의 Sequence Labeling을 적용하였다. 또한 관계 추출에서 문장에 대한 이해를 높이기 위해 BERT모델을 적용하여 실험을 진행하였다. 실험 결과 관계 추출에서 entity에 대한 방향성을 고려하지 않음을 확인하였다.

  • PDF

자율주행을 위한 적대적 공격 및 방어 딥러닝 모델 연구 (Study of Adversarial Attack and Defense Deep Learning Model for Autonomous Driving)

  • 김채현;이진규;정은;정재호;이현정;이규영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.803-805
    • /
    • 2022
  • 자율주행의 시대가 도래함에 따라, 딥러닝 모델에 대한 적대적 공격 위험이 함께 증가하고 있다. 카메라 기반 자율주행차량이 공격받을 경우 보행자나 표지판 등에 대한 오분류로 인해 심각한 사고로 이어질 수 있어, 자율주행 시스템에서의 적대적 공격에 대한 방어 및 보안 기술 연구가 필수적이다. 이에 본 논문에서는 GTSRB 표지판 데이터를 이용하여 각종 공격 및 방어 기법을 개발하고 제안한다. 시간 및 정확도 측면에서 성능을 비교함으로써, 자율주행에 최적인 모델을 탐구하고 더 나아가 해당 모델들의 완전자율주행을 위한 발전 방향을 제안한다.

네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구 (Traffic Data Generation Technique for Improving Network Attack Detection Using Deep Learning)

  • 이우호;함재균;정현미;정기문
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.1-7
    • /
    • 2019
  • 네트워크 공격을 탐지하기 위하여 기계학습을 이용한 다양한 연구가 최근 급격히 증가하고 있다. 이러한 기계학습 방법은 많은 데이터에 의존적이며 연구를 위해 다양한 실험 데이터가 공개되어 사용되고 있다. 하지만 실험 데이터 및 실제 환경에서 수집되는 데이터는 class간의 수량이 불균형하다는 문제점을 가지고 있다. 본 연구에서는 기계 학습을 이용한 침입탐지시스템의 한계점 중 학습데이터의 class간 불균형으로 인한 분류 성능 저하를 해결하기 위한 방법을 제안한다. 이를 위해 네트워크 트래픽 데이터를 처리하고 seqGAN를 이용하여 부족한 데이터를 생성하였다. 제안된 방법은 NSL-KDD, UNSW-NB15 데이터 셋을 대상으로 Text-CNN을 이용하여 분류하는 테스트를 실행한 결과 정밀도가 향상되는 것을 확인할 수 있었다.

강화학습 기반 네트워크 취약점 분석을 위한 적대적 시뮬레이터 개발 연구 (A Study on the Development of Adversarial Simulator for Network Vulnerability Analysis Based on Reinforcement Learning)

  • 김정윤;박종열;오상호
    • 정보보호학회논문지
    • /
    • 제34권1호
    • /
    • pp.21-29
    • /
    • 2024
  • ICT와 network의 발달로 규모가 커진 IT 인프라의 보안 관리가 매우 어려워지고 있다. 많은 회사나 공공기관에서 시스템과 네트워크 보안 관리에 어려움을 겪고 있다. 또한 하드웨어와 소프트웨어의 복잡함이 커짐에 따라 사람이 모든 보안을 관리한다는 것은 불가능에 가까워지고 있다. 따라서 네트워크 보안 관리에 AI가 필수적이다. 하지만 실제 네트워크 환경에 공격 모델을 구동하는 것은 매우 위험하기에 실제와 유사한 네트워크 환경을 구현하여 강화학습을 통해 사이버 보안 시뮬레이션 연구를 진행하였다. 이를 위해 본 연구는 강화학습을 네트워크 환경에 적용하였고, 에이전트는 학습이 진행될수록 해당 네트워크의 취약점을 정확하게 찾아냈다. AI를 통해 네트워크의 취약점을 발견하면, 자동화된 맞춤 대응이 가능해진다.