• Title/Summary/Keyword: advection and diffusion model

Search Result 94, Processing Time 0.029 seconds

Disposal Characteristics of Dredged Material from the Hopper Dredger (호퍼준설선의 투기특성)

  • Jeong, D.D.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.203-214
    • /
    • 1997
  • Hydraulic dredgers(Hopper dredger) are the most important piece of equipment in the entire harbor engineering field, and most suitable for the removal of sand and weakly consloidated sediment such as silt. In maintenance dredging, specially confined harbor or congested passage area, Hopper dredger is user most popularly because less obstruction and danger to navigation than other mostly stationary dredgers. Investigation of the physical behave of dredged material disposal in coastal water from the Hopper dredger includes estimations of pattern as well as thickness of material on the bottom. Calculation based on vertical settling and horizontal advection of single particles ignore the effects of bulk properties of the disposed marterial, vertical and horizontal diffusion. and material dilution due to the entrainment of ambient water during descent. This paper focuses on the analysis of dredging and dumping characteristics and the spatial and temporal changes in the dumping fields for the water column and bottom at a hypothetically confined coastal water. This model accounts the behavior of material after release from the hopper dredger. It is shown that the model describes the qualitative feature of prototype dumping process and its response.

  • PDF

Numerical Simulation of Advection and Diffusion using the Local Wind Model in Kwangyang Bay, Korea (국지풍모델을 이용한 광양만권의 이류확산 수치모의)

  • ;;Akira Kondo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • A three-dimensional numerical model which involved the nesting method was developed to reproduce the wind circulation of Kwangyang Bay area which comprises complicated mountains and sea topograph. The calculated results indicated geographical effects of Kwangyang Bay area, sea/land breezes and mount-valley wind which are local circular winds. We also noticed that the northern inland area of Kwangyang Bay formed the very complex wind systems under the influence of such geographic effects when a land breeze was not formed. A good agreement was found between predicted and observed values of temperature. In addition, the calculated results of the wind direction and the wind velocity are in accord with the observed values. They showed only a slight difference in between predicted and the observed values, when the sea breeze and the land breeze are changing.

A Study on Silt Transport of Seabed Around Incheon Harbor (인천항 주변 silt 이동에 관한 연구)

  • Baek, Seung-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2010
  • We calculated using siltation model to know the influnce of the tidal current, the tidal level, the sediment transport of seabed around sea area due to the construction of the Song do New city. We calculated the tidal current and based on this we estimated scour, sedimentation using the advection-diffusion equation and accessed the sediment transport of seabed before and after the construction of the New city. Sedimentation was increased in the east coast of Young jong Do, and Scour was increased according to the direction from the front route of north harbor to Ho do. Tidal level was increased overall.

Estimation of Suspended Solids Concentration Caused by Stream Bed Excavation Works through the Application of the Fickian Diffusion Model (Fick 확산 모형을 이용한 하상 굴착 공사로부터의 부유물질 농도 산정)

  • An, Myeong-Gil
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.621-628
    • /
    • 1997
  • Excavation works on stream beds have been done for various reasons including aggregate collection, sediment dredging, bridge constructions, or laying pipes under the ground. These activities may cause significant loadings of SS (suspended solids) resulting in water pollution and other detrimental effects to the surrounding environment. This research investigates application potential of a fickian diffustion model, derived from two dimensional advection-diffusion equation through some simplifying assumptions, as a planning tool for the estimation of SS loadings from excavation works and evaluation fo pollution prevention measures in case that sophisticated numerical simulation models are not applicable due to various practical reasons. Through a case study of the Juncheon stream in the Donghae City on the Kangwondo Province, this study demonstrates applicability of the fickian diffustion model as a practical method for the preliminary estimation of Ss loadings from excavation works and evaluation of performance of fabrics made of synthetic fiber for the reduction of downstream SS concentration with deficient field data.

  • PDF

An Effective Numerical Method for the Prediction of Oil Spreading (누유확산 및 이동의 추정을 위한 효율적인 수치기법)

  • Song, J.U.;Rho, J.H.;Yoon, B.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.113-118
    • /
    • 1997
  • A simulation model and its numerical algorithm for the prediction of time-varying oil pollution region are proposed. Not only forces inducing molecular diffusion of oil but also oil advection due to the ocean surface current are considered in the present unified model Furthermore, an automatic modulation of computational grid is introduced to achieve more practical and effective numerical scheme. Applying the present method to some assumed oil spill cases, quite realistic oil maps are thought to be obtained.

  • PDF

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

Two-Dimensional Numerical Simulation of Saltwater intrusion in Estuary with Sigma-Coordinate Transformation (연직좌표변환을 이용한 하구에서의 염수침투에 관한 2차원 수치모의)

  • Bae, Yong-Hoon;Park, Seong-Soo;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1263-1267
    • /
    • 2007
  • A more complete two-dimensional vertical numerical model has been developed to describe the saltwater intrusion in an estuary. The model is based on the previous studies in order to obtain a better accuracy. The non-linear terms of the governing equations are analyzed and the $\sigma$-coordinate system is employed in the vertical direction with full transformation which is recently issued in several studies because numerical errors can be generated during the coordinate transformation of the diffusion term. The advection terms of the governing equations are discretized by an upwind scheme in second-order of accuracy. By employing an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. In previous researches, some terms induced from the transformation have been intentionally excluded since they are asked the complicate discretization of the numerical model. However, the lack of these terms introduces significant errors during the numerical simulation of scalar transport problems, such as saltwater intrusion and sediment transport in an estuary. The numerical accuracy attributable to the full transformation is verified by comparing results with a previous model in a simply sloped topography. The numerical model is applied to the Han River estuary. Very reasonable agreements for salinity intrusion are observed.

  • PDF

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.

Effects of Strong Wind and Ozone on Localized Tree Decline in the Tanzawa Mountains of Japan

  • Suto, Hitoshi;Hattori, Yasuo;Tanaka, Nobukazu;Kohno, Yoshihisa
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • The numerical simulation of wind and ozone ($O_3$) transport in mountainous regions was performed with a computational fluid dynamics technique. A dry deposition model for $O_3$ was designed to estimate $O_3$ deposition in complex terrain, and the qualitative validity of the predicted $O_3$ concentration field was confirmed by comparison with observed data collected with passive samplers. The simulation revealed that wind velocity increases around ridge lines and peaks of mountains. The areas with strong wind corresponded well with the sites of tree decline at high altitudes, suggesting that it is an important factor in the localization of tree/forest decline. On the other hand, there is no direct relationship between forest decline and $O_3$ concentration. The $O_3$ concentration, however, tends to increase as wind velocity becomes higher, thus the $O_3$ concentration itself may be a potential secondary factor in the localized decline phenomena. While the diffusion flux of $O_3$ is not related to localized tree decline, the pattern of advection flux is related to those of high wind velocity and localized tree decline. These results suggest that strong wind with large advection flux of $O_3$ may play a key role in the promotion of tree/forest decline at high mountain ridges and peaks.

A Study on the Initial Behavior of Dredged Material Disposal in the Coastal Water (연안수역에서 투기준설토의 초기거동에 관한 연구)

    • Journal of Korean Port Research
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 1995
  • Investigation of the physical behavior of dredged material disposal in coastal water includes estimations of water column concentration in the receiving water, exposure time, the initial deposition pattern as well as thickness of material at the dumping fields near the estuary area. Calculation based on vertical setting and horizontal advection of single particles ignore the effects of bulk properties of the disposed material, vertical and horizontal diffusion, and material dilution due to the entrainment of ambient water during descent. This paper focuses on the spatial and temporal changes in the dumping fields for the water column and bottom at a hypothetically confined coastal water, where the ambient time-invariant velocity and density profiles are applied, within the initial time period following the instantaneous release of the dredged material. This model accounts the behavior of material after release divided into three phases: convective descent, dynamic collapse and long-term passive dispersion

  • PDF