• Title/Summary/Keyword: advanced wastewater treatment process

Search Result 237, Processing Time 0.024 seconds

Photodegradation stability study of PVDF- and PEI-based membranes for oily wastewater treatment process

  • Ong, C.S.;Lau, W.J.;Al-anzi, B.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • In this work, an attempt was made to compare the effects of UV irradiation on the intrinsic and separation properties of membranes made of two different polymeric materials, i.e., polyvinylidene fluoride (PVDF) and polyetherimide (PEI). The changes on membrane structural morphologies and chemical characteristics upon UV-A exposure (up to 60 h) were studied by FESEM and FTIR, respectively. It was found that cracks and fractures were detected on the PVDF-based membrane surface when the membrane was exposed directly to UV light for up to 60 h. Furthermore, the mechanical strength and thermal stability of irradiated PVDF-based membrane was reported to decrease with increasing UV exposure time. The PEI membrane surface meanwhile remained almost intact throughout the entire UV irradiation process. Filtration experiments showed that the permeate flux of UV-irradiated PVDF membrane was significantly increased from approximately 11 to $16L/m^2.h$ with increasing UV exposure time from zero to 60 h. Oil rejection meanwhile was decreased from 98 to 85%. For the PEI-based membrane, oil rejection of >97% was recorded and its overall structural integrity was marginally affected throughout the entire UV irradiation process. The findings of this work showed that the PEI-based membrane should be considered as the host for photocatalyts incorporation if the membrane was to be used for UV-assisted wastewater treatment process.

Estimation of greenhouse gas (GHG) emission from wastewater treatment plants and effect of biogas reuse on GHG mitigation

  • Chang, Jin;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • A comprehensive mathematical model was developed for this study to estimate on-site and off-site GHG emissions from wastewater treatment plants (WWTPs). The model was applied to three different hybrid WWTPs (S-WWTP, J-WWTP, and T-WWTP) including anaerobic, anoxic, and aerobic process, located in Seoul City, South Korea. Overall on-site and off-site GHG emissions from S-WWTP, J-WWTP, and T-WWTP were $305,253kgCO_2e/d$, $282,682kgCO_2e/d$, and $117,942kgCO_2e/d$, respectively. WWTP treating higher amounts of wastewater produced more on-site and off-site GHG emissions. On average, the percentage contribution of on-site and off-site emissions was 3.03% and 96.97%. The highest amount of on-site GHG emissions was generated from anoxic process and the primary on-site GHG was nitrous oxide ($N_2O$). Off-site GHG emissions related to electricity consumption for unit operation was much higher than that related to production of chemicals for on-site usage. Recovery and reuse of biogas significantly reduced the total GHG emissions from WWTPs. The results obtained from this study can provide basic knowledge to understand the source and amount of GHG emissions from WWTPs and strategies to establish lower GHG emitting WWTPs.

A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.59-86
    • /
    • 2021
  • Landfilling is the most commonly adopted method for a large quantity of waste disposal. But, the main concern related to landfills is the generation of leachate. The leachate is high strength wastewater that is usually characterized by the presence of high molecular recalcitrant organics. Several conventional methods are adopted for leachate treatment. However, these methods are only suitable for young leachate, having high biodegradability and low toxicity levels. The mature and stabilized leachate needs advanced technologies for its effective treatment. Advanced oxidation processes (AOPs) are very suitable for such complex wastewater treatment as reported in the literature. After going through the literature survey, it can be concluded that Fenton-based approaches are effective for the treatment of various high/low strength wastewaters treatment. The applications of the Fenton-based approaches are widely adopted and well recognized due to their simplicity, cost-effectiveness, and reliability for the reduction of high chemical oxygen demand (COD) as reported in several studies. Besides, the process is relatively economical due to fewer chemical, non-sophisticated instruments, and low energy requirements. In this review, the conventional and advanced Fenton's approaches are explained with their detailed reaction mechanisms and applications for landfill leachate treatment. The effect of influencing factors like pH, the dosage of chemicals, nature of reaction matrix, and reagent ratio on the treatment efficiencies are also emphasized. Furthermore, the discussion regarding the reduction of chemical oxygen demand (COD) and color, increase in biodegradability, removal of humic acids from leachate, combined processes, and the pre/post-treatment options are highlighted. The scope of future studies is summarized to attain sustainable solutions for restrictions associated with these methods for effective leachate treatment.

A Study on the Dye Wastewater Treatment Using TiO2 Photocatalyst/Ozonation (광촉매/오존을 이용한 염색폐수처리에 관한 연구)

  • Kim, Chang-Kyun;Chung, Ho-Jin;Kim, Jong-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.663-670
    • /
    • 2007
  • This study was performed to provide basic information for evaluating the efficiency and applicable extent of photocatalysis and ozonation for the treatment of dye wastewater. The treatability of dye wastewater by $UV/TiO_2$ and $UV/TiO_2/O_3$ advanced oxidation process (AOP) was investigated under various conditions. The experiments were conducted in a batch reactor of 50 liters equipped with twelve UV Lamps of 16W. In $UV/TiO_2$ AOP, the removal efficiency of TCODMn and Color increased to 58% and 67% respectively with increasing UV intensity. Also, The removal efficiency of TCODMn and Color increased to 97% and 99% respectively with increasing $H_2O_2$. Acid area was more efficient than neutral and alkalic areas in wastewater treatment, and pH 5 was the most effective and the treatment efficiency continually increased as the amount of photocatalyst was increased. When the photocatalyst was increased, TCODMn was removed faster than Color.

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Evaluation of Water Treament System for Phenol Removal in the Nakdong River Basin (낙동강 수계 페놀처리를 위한 정수처리시스템 평가)

  • Kang, Byung-Jae;Chae, Seon-Ha;Lee, Kyung-Hyuk;Jeon, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.609-618
    • /
    • 2009
  • Repeated phenol spill in the Nakdong River has been a big issue in Korea since 1991. In this study, treatment of phenol in each water treatment process and total water treatment system is evaluated. Phenol was highly volatile, easily oxidized by ozone, and readily absorbed onto GAC. When there was phenol of 0.3mg/L in water, by ozonation of 1mg/L or by GAC adsorption with EBCT of 10minutes or longer, it could be treated to lower than 0.005mg/L, the national drinking water standard of phenol. Even when a sufficient contact time(70minutes) was allowed, only 35 to 40% of phenol could be removed by powdered activated carbon(PAC). Based on the test results, it can be concluded that 1.0mg/L or less concentration of phenol can be treated at the plants adopting the combination process of ozone and GAC down to the safe level. In this study, removal characteristics for phenol were evaluated with the existing pilot plant and demo plant in different advanced water treatment processes(AWTPs). In the future, studies on changes in oxidation and adsorption characteristics caused by competitive matters such as DOC and removal characteristics by other various AWTPs including ozone/filter adsorber need to be performed.

Characteristics of Advanced Wastewater Treatment Process Using High MLSS in Anoxic Tank (무산소조에서 고농도 미생물을 이용한 하수고도처리공정의 처리특성)

  • Son, Dong-Hun;Lim, Bong-Su;Park, Hye-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2004
  • This study was accomplished to develope an advanced wastewater treatment process using high MLSS in anoxic tank aimed to improve nutrient removal and to reduce wasting sludge. It was operated with 4 Modes with varing solid concentration and internal recycle ratios. Mode I, II, III was operated 1.0~1.5% MLSS concentration at anoxic tank with 50% sludge recycle rate, however, each internal recycle rate were 100%, 200%, 300% and Mode IV was operated 1.5~2.0% MLSS concentration at anoxic tank with 50% sludge recycle rate and 100% internal recycle rate. The COD removal efficiency didn't show any big difference from Mode I to IV. The average COD removal rate was over than 90%. The T-N removal rate was 73%, the highest rate in all mode. The 36% of SCOD is used for the denitrification and phosphorus release in the anoxic tank. Specific denitrification rate was 3.5mg $NO_3{^-}-N/g$ Mv/hr and denitrification time was 0.7hr. As MLSS concentration is higher in anoxic tank as denitrification time would be shorter. The T-P removal rate was average 70%. The phosphorus release accomplished from the anoxic tank because the anaerobic condition was prevalent in the anoxic due to the prompt completion of denitrification. Sludge production was 0.28 kgVSS/kg $BOD_{removed}$ under the 1.5% MLSS and 17 day SRT. It is prominent result which has 40% sludge reduce comparing with traditional activate sludge system.

Study on Removal Efficiency of Complex Wastewater from Agricultural and Industrial Plant for Advanced Treatments (고도처리를 위한 농공단지 복합폐수의 처리효율 특성에 관한 연구)

  • Seo, Tae Won;Kim, Moon Suk;Park, Young Dal;Cho, Wook Sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.53-65
    • /
    • 2012
  • This study was focused on removal efficiency of complex (or mixed) wastewater from agricultural and industrial plant for advanced treatments by HBR-II process, that was well known to be suitable to the treatment of livestock wastewater. The main purpose of this study was intended to evaluate the applicable feasibility of the HBR-II for revamping the present activated sludge process to the advanced one. And also, the settling study including the batch typed experimental column tests was performed to evaluate the coagulation stability of organic colloidal particles in wastewater. The mid-scale plant of HBR-II process between pilot and laboratory was used for this study. As F/M ratio remains constant in the range of 0.20~0.25 $BOD_5/Kg{\cdot}MLSS/Day$, the efficiency of biological treatment increased. It has been shown that the results of biodegradation study were, for removal efficiency(%), $BOD_5$ 98.4%, $COD_{Mn}$ 92.9%, SS 97.5%, T-N 91.3%, T-P 82.3%, respectively, which were relatively higher than other processes. From this study, HBR-II process would be well applied to the biological treatment of agricultural and industrial complex wastewater.

Energy Efficiency Evaluation of Publicly Owned Wastewater Utilities (공공하수처리장의 에너지 소비현황 및 효율성 평가)

  • Cho, Eulsaeng;Han, Dae Ho;Ha, Jongsik
    • Journal of Environmental Policy
    • /
    • v.11 no.4
    • /
    • pp.85-105
    • /
    • 2012
  • In this paper, the energy efficiency of wastewater utilities was evaluated to explore ways to save energy via operational measures. The correlation of each wastewater characteristic parameter to energy was assessed to find a set of parameters that explained most of the variations in energy use among utilities. The results show that increases in inflow, influent COD concentration, and ratio of advanced treatment generally increased the energy use. On the other hand, increases in load factor (influentaverage flow/design flow) reduced the energy use. In the regression analysis, the energy efficiency was highest in the A2O advanced process. On the other hand, the membrane process (among the advanced processes) and the contacted aeration process (among the secondary processes) require more efforts in saving energy. However, the data base system related to energy use must be supplemented in order for more accurate analysis of energy consumption in wastewater treatment facilities. In particular, i) electricity consumption of relay pumps and, ii) energy usage per unit process, iii) pump power usage to discharge treated wastewater in a long distance, if necessary, and iv) alternative energy production and utilization status must be recorded. By utilizing the results of the analysis conducted in this study, it is possible to quantify a level of energy savings needed and establish customized energy saving measures to achieve a certain target level for benchmarking a successful case of wastewater utilities.

  • PDF

Study on Removal of DOC for Effluent from Nitrification and Denitrification Process with Zeolite by Combined Process of Coagulation and UF Membrane (제올라이트를 첨가한 질산화 탈질공정에서 응집과 UF공정을 이용한 처리수내 용존 유기물질 제거 연구)

  • Han, Jang Hyuk;Yoon, Tai Il;Cho, Kyung Chul;Song, Jea Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.537-546
    • /
    • 2005
  • This study was carried out to evaluate EPS and SMP variation of sludge and effluent in nitrification and denitrification process with zeolite addition, a possible reduction of effluent DOC by URC(Ultra Rapid Coagulation) process. As a biological wastewater treatment result, EPS formation of both aeration and anoxic sludges are not affect by SRT variation. However, EPS concentration of sludges is higher in aeration tank than in anoxic tank by 6~8 mg EPS/ g VSS. Linear relationship between SMP to DOC indicates that SMP of bulk solution contributes to most of the biological treatment effluent DOC. DOC and turbidity removal efficiency was more improved with URC process than in a conventional coagulation. For pretreatment of UF filtration DOC removal was advanced by URC process than only UF filtration.