• Title/Summary/Keyword: advanced vehicle

Search Result 1,335, Processing Time 0.028 seconds

An Investigation of Con01 Threshold of Vehicle Stability Control System (제어시점에 따른 차량 안정성 제어 시스템의 제어 경향)

  • Chung, Tae-Young;Yi, Kyong-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.195-201
    • /
    • 2005
  • In conventional Vehicle Stability Control (VSC) System, a control threshold is designed by average driver characteristics. Despite the stabilizing effort, VSC causes redundancy to an expert driver. An advanced VSC which has flexibility on its control property is proposed in this study. By using lateral velocity estimator, a control threshold is determined on side slip angle and angular velocity phase plane. Vehicle planar motion model based sliding controller is modified with respect to various control thresholds. The performance of the proposed VSC algorithm has been investigated by human-in-the-loop simulation using a vehicle simulator. The simulation results show that the control threshold has to be determined with respect to the driver steering characteristics. A VSC with variable control thresholds would provide an improvement compared to a VSC with a constant threshold.

A Study for Driving Mechanism Evaluation of the Lane Keeping Assistance System (차선유지지원장치 작동 메커니즘 평가에 관한 연구)

  • Chung, Seung-Hwan;Kim, Jeong-Min;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • LKAS(Lane Keeping Assistance System) main function is to support the driver in keeping the vehicle within the current lane. Therefore, this system is able to reduce the driver workload with assisting the driver during driving. In this paper, we presented on study for test procedures and evaluation methods of the LKAS. The vehicle test conducted on straight road, left curve, right curve and four different types of lane under various vehicle speeds. This study proposed the LKAS system test procedures and methods that we are able to identify LKAS driving mechanism and performance.

A Study on Trend of Technology Development for Unmanned Combat Ground Vehicle (무인전투차량 기술개발 동향조사 및 분석)

  • Park, Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1735-1739
    • /
    • 2009
  • The keen global competition is expected among foreign advanced nations for source, key technologies required by unmanned combat ground vehicle. Therefore, the trend of technologies for unmanned ground combat vehicle was analyzed in this research. It was based on the submitted patents from 1988 to 2008 in Korea, U.S.A, Japan, Europe, Canada and Israel. This analysis was focused on finding the technical level, the challenge area and breakthrough technologies and the growth of technologies of each nations considering opinions of experts. This report suggested the field of key technology development

Multi-Vehicle Tracking Adaptive Cruise Control (다차량 추종 적응순항제어)

  • Moon Il ki;Yi Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

Development of Hydraulic Simulation Model for ESP Real Time Simulation (전자식 차체 자세제어 장치 실시간 시뮬레이션을 위한 유압 모델 개발)

  • Cheon, Se Young;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.36-42
    • /
    • 2019
  • The ESP (Electronic Stability Program) is an active control system that controls the posture of the vehicle by sensing the unstable state of the vehicle during braking, driving, or turning. The system works if the vehicle becomes unstable and it is very dangerous to develop it in the actual vehicle. For this reason, many studies have been carried out on the method of developing with simulation such as SIL / EIL. Some advanced companies have already applied it to the product development process. In this study, ESP hydraulic system and braking device model were constructed using SimulationX to build ESP SIL / EIL model. The hydraulic system model was constructed using the actual design parameters and the performance of the hydraulic model was verified by comparing with the actual vehicle test.

Vehicle Classification and Tracking based on Deep Learning (딥러닝 기반의 자동차 분류 및 추적 알고리즘)

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

Dimension Enhancement Design of Bracket for Strength Improvement of the Bus Bare Chassis in which Shape is Fixed

  • Kwon, Young Woong
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2023
  • One of the basic tasks in the automobile manufacturing process is to design a bare chassis, which is the basic frame of a vehicle, and a bracket is a member connecting various devices to the frame. Bracket, which is a member connecting the engine, transmission, and suspension, which are the core devices of driving and operating the vehicle, to the frame, must maintain safety during vehicle operation. If the bracket connecting the various devices constituting the vehicle to the frame does not have durability, serious accidents may occur during operation of the vehicle. In this study, we performed stress analysis on the brackets installed in the bare chassis of the 25-passenger bus in the development stage. Based on the stress analysis performed, an improved bracket dimension was proposed.