• Title/Summary/Keyword: advanced thermal analysis

Search Result 769, Processing Time 0.027 seconds

Thermal transfer behavior in two types of W-shape ground heat exchangers installed in multilayer soils

  • Yoon, Seok;Lee, Seung-Rae;Go, Gyu-Hyun;Xue, Jianfeng;Park, Hyunku;Park, Dowon
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.79-98
    • /
    • 2014
  • This paper presents an experimental and numerical study on the evaluation of a thermal response test using a precast high-strength concrete (PHC) energy pile and a closed vertical system with W-type ground heat exchangers (GHEs). Field thermal response tests (TRTs) were conducted on a PHC energy pile and on a general vertical GHE installed in a multiple layered soil ground. The equivalent ground thermal conductivity was determined by using the results from TRTs. A simple analytical solution is suggested in this research to derive an equivalent ground thermal conductivity of the multilayered soils for vertically buried GHEs. The PHC energy pile and general vertical system were numerically modeled using a three dimensional finite element method to compare the results with TRTs'. Borehole thermal resistance values were also obtained from the numerical results, and they were compared with various analytical solutions. Additionally, the effect of ground thermal conductivity on the borehole thermal resistance was analyzed.

Characteristic Studies of Plasma Treated unidirectional Hildegardia Populifolia Fabric

  • Prasad, C. Venkata;Lee, D.W.;Sudhakara, P.;Jagadeesh, D.;Kim, B.S.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.54-59
    • /
    • 2013
  • This study deals with effect of plasma treatment on the properties of unidirectional ligno cellulosic fabric Hildegardia Populofolia (HDP) fabric. Thermal stability of the fabric was determined by differential scanning calorimetry (DSC) and Thermo gravimetric analysis (DSC). Morphological properties was analyzed by SEM analysis and found that the surface was rough upon plasma treatment which provides good interfacial adhesion with matrix during composite fabrication. Thermal stability and mechanical properties of the plasma treated fabric slightly increases compare to alkali and untreated fabric. It was observed that tensile properties of the fabric increases upon plasma treatment due to the formation of rough surface. SEM analysis indicates formation of rough surface on plasma treatment which helps in increasing the interfacial interaction between the matrix (hydrophobic) and fabric (hydrophilic).

Thermal behavior and rheology of polypropylene and its blends with poly($\varepsilon$-caprolactone)

  • Chun, Yong-Sung;Minsoo Han;Park, Junghoon;Kim, Woo-Nyon
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2000
  • The crystallization behavior of homo polypropylene (PP) and PP in the PP-poly($\varepsilon$-caprolactone) (PCL) blends during isothermal crystallization has been investigated using differential scanning calorimeter (DSC) and advanced rheometric expansion system (ARES). From the storage modulus data of the homo PP and PP-PCL blends during isothermal crystallization, the volume fraction of crystallized material ($X_t$) of the homo PP and PP in the PP-PCL blends was calculated using the various rheological models. The results of $X_t$ of the homo PP and PP in the PP-PCL blends from ARES measurement were compared with the results from DSC. The $X_t$ of the homo PP was found to be higher in the ARES measurement than in the DSC. The crystallization rate of the homo PP was found to be faster in the rheological measurements than in the thermal analysis. The $X_t$ of PP in the PP-PCL blends with various compositions was obtained from the thermal analysis and rheological measurements. The $X_t$ of PP in the PP-PCL blends obtained from the thermal analysis and rheological measurements are not consistent. This discrepancy of $X_t$ may be due to the morphological changes resulted from the different crystallization kinetics of PP in the PP-PCL blends.

  • PDF

Manufacturing and Material Analysis of Collagen/Chitosan Conjugated Fibers for Medical Application (의료용 소재 활용을 위한 콜라겐/키토산 복합섬유의 제조 및 특성 분석)

  • Gwak, Hyeon Jung;Ahn, Hyunchul;Lee, Won Jun;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.131-140
    • /
    • 2021
  • Collagen and chitosan are used in medical and cosmetic materials as natural polymers. In order to utilize the advantages of the materials, collagen/chitosan conjugated wet-spun fibers were prepared. The analysis of surface, optical, thermal and mechanical properties was carried out on the various composition of collagen and chitosan. As a result of images analysis, it was verified that the collagen/chitosan conjugated fibers were stably spun. In addition, the optical and thermal properties of fibers were observed to be changed by hydrogen bond. As a result, an optimized composition could be found at an appropriate content. Moreover, the optimized fibers have mechanical properties similar to chitosan fibers, while improving the structural and thermal stability by its hydrogen bond. In addition, the wet-spun collagen/chitosan conjugated fibers can be applied to medical and various fields through mechanical properties according to content control.

Synthesis and Characterization of Novel Fused Aromatic Semiconductors

  • Zhao, Qinghua;Park, Jong-Won;Kim, Yun-Hi;Kwon, Soon-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1193-1197
    • /
    • 2006
  • The novel oligomers were synthesized by Grignard reaction, the suzuki coupling reaction, etc. The oligomers were characterized by Infrared (IR), Mass spectrometer (MS). Their thermal properties were investigated by differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The new oligomers showed high thermal stability above $300^{\circ}C$.

  • PDF

APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

  • Kim, Hyeonmin;Na, Man Gyun;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.737-752
    • /
    • 2014
  • As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.300-304
    • /
    • 2009
  • Thermal emissivity of nuclear graphite was measured with its oxidation degree. Commercial nuclear graphites (IG-110, PECA, IG-430, and NBG-18) have been used as samples. Concave on graphites surface increased as its oxidation degree increased, and R value (Id/Ig) of the graphites decreased as the oxidation degree increased. The thermal emissivity increased depending on the decrease of the R (Id/Ig) value through Raman spectroscopy analysis. It was determined that the thermal emissivity was influenced by the crystallinity of the nuclear graphite.

Free Vibration Analysis of Thermoelastic Structure (열탄성 구조물의 자유진동 특성)

  • Cho, Hee-Keun;Park, Young-Won;Park, Ki-Young;Lee, Kyoung-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.201-208
    • /
    • 2000
  • A numerical analysis algorithm for thermally loaded structures has been proposed and compared with the general free vibration approach to determine the characteristics of thermal load effects in vibration structures. The field of numerical inspection includes free vibration analysis, transient heat transfer analysis and thermal stress analysis. The key point of the analysis of thermally loaded structure is the method of parallel time integration between transient heat transfer and free vibration simultaneously. The results of the study demonstrate the computation of the specific total external force vector and stiffness matrix. The proposed analysis method can be applied to both heated and cooled structure vibration analysis.

  • PDF

A Characteristic Analysis on the Thermal Performance of the Dish Type Solar Concentrating System (Dish형 태양열 집광시스템 실증연구를 위한 집열성능 특성 분석)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Yoon, Hwan-Ki;Yoo, Seong-Yeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The dish type solar thermal concentrating system can collect the solar energy above $800^{\circ}C$. It has a concentration ratio of 800 and total reflector area of $49m^2$. To operate solar receivers at high temperature, the optimum aperture size is obtained from a comparison between maximizing absorbed energy and minimizing thermal losses. The system efficiency is defined as the absorbed energy by working fluid in receiver divided by the energy coming from the concentrator. We find that system efficiency is stable in case of flow rate of above 6lpm. The system efficiency are 64.9% and 65.7% in flow rate of 6lpm and 8lpm, respectively. The thermal performance showed that the maximum efficiency and the factor of thermal loss in flow rate of 8lpm are 68% and 0.0508.

Evaluation of Thermal Property and Fluidity with Underfill for BGA Package (BGA 패키지를 위한 언더필의 열적 특성과 유동성에 관한 연구)

  • Noh, Bo-In;Lee, Bo-Young;Kim, Soo-Jung;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, the curing kinetics and thermal degradation of underfill were investigated using differential scanning calorimetry (DSC) and thermo gravimetry analysis (TGA). The mechanical and thermal properties of underfill were characterized using dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). Also, we presented on underfill dispensing process using Prostar tool. The non-isothermal DSC scans at various heating rates, the exothermic reaction peak became narrower with increasing the heating rate. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The results of fluidity phenomena were simulated using Star CD program, the fluidity of the underfills with lower viscosity was faster.