DOI QR코드

DOI QR Code

Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -

  • Seo, Seung-Kuk (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Kim, Eung-Seon (Korea Atomic Energy Research Institute (KAERI)) ;
  • Chi, Se-Hwan (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Suk-Hwan (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang-Woo (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology)
  • Received : 2009.07.13
  • Accepted : 2009.09.23
  • Published : 2009.12.30

Abstract

Thermal emissivity of nuclear graphite was measured with its oxidation degree. Commercial nuclear graphites (IG-110, PECA, IG-430, and NBG-18) have been used as samples. Concave on graphites surface increased as its oxidation degree increased, and R value (Id/Ig) of the graphites decreased as the oxidation degree increased. The thermal emissivity increased depending on the decrease of the R (Id/Ig) value through Raman spectroscopy analysis. It was determined that the thermal emissivity was influenced by the crystallinity of the nuclear graphite.

Keywords

References

  1. Moormann, R.; Hinssen, H. K.; Kuhn, K. Nuclear Engineering and Design 2004, 227, 281. https://doi.org/10.1016/j.nucengdes.2003.11.001
  2. Kurumada, A.; Oku, T.; Harada, K.; Kawamata, K.; Sato, S.; Hiraoka, T.; McEaney, B. Carbon 1997, 35, 1157. https://doi.org/10.1016/S0008-6223(97)00088-2
  3. Idaho National Engineering & Environmental Laboratory, "Very High Temperature Gas Cooled Reactor Systems", 2002 Winter ANS Meeting, Washington, D.C. & T. Chunhe and G. Jie, J. Nuclear Materials 1995, 224, 103. https://doi.org/10.1016/0022-3115(95)00031-3
  4. Mahajan, O. P.; Yarzab R.; Walker Jr. P. L. Fuel 1978, 57, 643. https://doi.org/10.1016/0016-2361(78)90196-5
  5. Sanchez, A. R.; Elguezabal, A. A.; Torre Saenz, L. L. Carbon, 2001, 39, 1367. https://doi.org/10.1016/S0008-6223(00)00253-0
  6. Kasaoka, S.; Sakata, Y.; Kayano, S.; Masuoka, Y. Int. Chem. Eng. 1983, 23, 477.
  7. Hu, Y. Q.; Nikzat, H.; Nawata, M.; Kobayashi, N.; Hasatani, M. Fuel 2001, 80, 2111. https://doi.org/10.1016/S0016-2361(01)00086-2
  8. Rafsanjani, H. H.; Jashidi, E.; Rostam-Abadi, M. Carbon 2002, 40, 1167. https://doi.org/10.1016/S0008-6223(01)00265-2
  9. Eatherly, W. P.; Piper, E. L. "Nuclear Graphite", ed. Nightingale R. E., Academic Press, New York and London, 1962, 21.
  10. Babout, L.; Mummery, P. M.; Marrow, T. J.; Tzelepi, A.; Withers, P. J. Carbon 2005, 43, 765. https://doi.org/10.1016/j.carbon.2004.11.002
  11. Wen, K.Y. ; Marrow, T. J. ; Marsden, B.J. Carbon 2008, 46, 62 https://doi.org/10.1016/j.carbon.2007.10.025
  12. Sharma, A.; Kyotani, T.; Tomita, A. Carbon 2000, 38, 1977. https://doi.org/10.1016/S0008-6223(00)00045-2
  13. Kovalevski, V. V.; Buseck, P. R.; Cowley, J. M. Carbon 2001, 39, 243. https://doi.org/10.1016/S0008-6223(00)00120-2
  14. Senneca, O.; Salatino, P.; Masi, S. Fuel 1998, 77, 1483. https://doi.org/10.1016/S0016-2361(98)00056-8
  15. Busyin, R. M.; Rouzaud, J. N.; Ross, J. V. Carbon 1995, 33, 679. https://doi.org/10.1016/0008-6223(94)00155-S
  16. Kordatosa, A. D.; Vlasopoulosa, S.; Strikosa, A.; Ntziounia, S.; Gavela, S.; Trasobaresb, V.; Kasselouri-Rigopouloua. Electrochemica Acta 2009, 54, 2466. https://doi.org/10.1016/j.electacta.2008.07.080
  17. Schenze, K.; Fischer, S.; Brendler, E. Cellulose 2005 , 12, 223. https://doi.org/10.1007/s10570-004-3885-6
  18. Roh, J. S. Carbon letters 2008, 9, 127. https://doi.org/10.5714/CL.2008.9.2.127
  19. Roh, J. S.; Kim, S. h. Carbon Letters 2009, 10, 1. https://doi.org/10.5714/CL.2009.10.1.001
  20. Seo, S. K.; Roh, J. S.; Kim, E. S.; Chi, S. H.; Kim, S. H.; Lee, S. W. Carbon letters, in press.
  21. Hardwick, L. J.; Novak, P.; Buqa, H. Solid State Ionics 2006, 177, 2801. https://doi.org/10.1016/j.ssi.2006.03.032
  22. Hirai, T.; Compan, J.; Niwase, K.; Linke, J. J. Nuclear Materials 2008, 373, 119. https://doi.org/10.1016/j.jnucmat.2007.05.040
  23. Perraki, M.; Proyer, A.; Mposkos, E.; Kaindl, R.; Hoinkes, G. Earth and Planetary Science Letters 2006, 241, 672. https://doi.org/10.1016/j.epsl.2005.11.014

Cited by

  1. Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction vol.12, pp.1, 2011, https://doi.org/10.5714/CL.2011.12.1.008
  2. Investigation of the effects of graphite flake alignment on thermal emissivity by applying a magnetic field during coating of an aluminum sheet vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1652-3