• Title/Summary/Keyword: advanced process control

Search Result 898, Processing Time 0.031 seconds

FPSO Cargo Pumping 시스템 가상운전 시스템 개발

  • Nam, Ki-Il;Han, Ki-Hun;Chang, Kwang-Pil;Oh, Tae-Young;Chang, Dae-Jun;Song, Seok-Ryong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.251-252
    • /
    • 2006
  • This study developed the virtual operation system for the hydraulic pump system for marine usage. The scope of this study is to develop a process dynamic simulation model for the hydraulic pump system for marine usage, to investigate the process dynamic characteristics using the models, to accomplish the logic diagram for the PLC control and to achieve a human-machine interface (HMI) for the convenience of operators to monitor and control the process. The virtual operation system provides a virtual operation environment for the pumping system, enabling the operators to simulate the change of process variables. The system will assist in developing advanced control logics and then optimal design of the system.

  • PDF

Verification of Flight Control Law Similarity and HILS Environment Reliability for Fighter Aircraft (전투기급 비행제어법칙 상사성 및 HILS 환경 신뢰성 검증)

  • Ahn, Seong-Jun;Kim, Chong-Sup;Cho, In-Je;Lee, Eun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.701-708
    • /
    • 2009
  • The flight control law of developed flight control computer(DFLCC) is developed based on operation flight program of advanced trainer aircraft full scale development final configuration. The flight control law design is used common use development tool in GUI(Graphic User Interface) environment. The flight control law transformed to C-Code is reflected in OFP. The OFP is verified by the standardized verification process. But, before standardized verification process, we need preliminary verification process such as similarity of flight control law and reliability of developed HILS. Similarity of flight control law is verified by comparing the aircraft response of advanced trainer aircraft and those of the developed control law. Also, reliability of developed HILS is verified by comparing the aircraft response of HILS and Non-real time simulation result. This paper verifies similarity of developed control law and reliability of HILS environment as comparing aircraft response.

A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구)

  • Lee, Eun-Sang;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

Design of a CMAC Controller for Hydro-forming Process (CMAC 제어기법을 이용한 하이드로 포밍 공정의 압력 제어기 설계)

  • Lee, Woo-Ho;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.329-337
    • /
    • 2000
  • This study describes a pressure tracking control of hydroforming process which is used for precision forming of sheet metals. The hydroforming operation is performed in the high-pressure chamber strictly controlled by pressure control valve and by the upward motion of a punch moving at a constant speed, The pressure tracking control is very difficult to design and often does not guarantee satisfactory performances be-cause of the punch motion and the nonlinearities and uncertainties of the hydraulic components. To account for these nonlinearities and uncertainties of the process and iterative learning controller is proposed using Cerebellar Model Arithmetic Computer (CMAC). The experimental results show that the proposed learning control is superior to any fixed gain controller in the sense that it enables the system to do the same work more effectively as the number of operation increases. In addition reardless of the uncertainties and nonlinearities of the form-ing process dynamics it can be effectively applied with little a priori knowledge abuot the process.

  • PDF

Dual-Stage Servo System using Electrostatic Microactuator for Super-High Density HDD (정전형 마이크로 액추에이터를 이용한 초고밀도 HDD용 Dual-Stage 서보 시스템)

  • Kim, Seung-Han;Seong, U-Gyeong;Lee, Hyo-Jeong;Lee, Jong-Won;Choe, Jeong-Hun;An, Yeong-Jae;Jeon, Guk-Jin;Kim, Bong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.153-160
    • /
    • 1999
  • Dual-stage servo system for super-high density HDD has the chances of being composed of the coarse actuator(VCM) for track-seeking control and the fine actuator(microactuator) for-following control in near future. This paper presents the concept design of dual-stage servo system and the track-following control using an electrostatic microactuator for super-high density HDD. The electrostatic microactuator is designed and fabricated by MEMS(micro-electro-mechanical system) process. Both the nonlinear plant(voltage/displacement-to-electrostatic force) and the linear plant(electrostatic force-to-displacement) of the microactuator are established. Inverse function of the nonlinear plant is employed for a feedforward nonlinear compensator design. And feedforward control effect of this compensator is shown by time-domain experiments. A track-following feedback controller is designed using the feedback nonlinear compensator which is derived from the feedforward nonlinear compensator. The track-following control experiment is done to show the control efficiency of the proposed control system. And, excellent track-following control performance(2.21kHz servo-bandwidth, 7.51dB gain margin, $50.98^{\circ}$phase margin) is achieved by the proposed control system.

  • PDF

Application of Integrated Security Control of Artificial Intelligence Technology and Improvement of Cyber-Threat Response Process (인공지능 기술의 통합보안관제 적용 및 사이버침해대응 절차 개선 )

  • Ko, Kwang-Soo;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.59-66
    • /
    • 2021
  • In this paper, an improved integrated security control procedure is newly proposed by applying artificial intelligence technology to integrated security control and unifying the existing security control and AI security control response procedures. Current cyber security control is highly dependent on the level of human ability. In other words, it is practically unreasonable to analyze various logs generated by people from different types of equipment and analyze and process all of the security events that are rapidly increasing. And, the signature-based security equipment that detects by matching a string and a pattern has insufficient functions to accurately detect advanced and advanced cyberattacks such as APT (Advanced Persistent Threat). As one way to solve these pending problems, the artificial intelligence technology of supervised and unsupervised learning is applied to the detection and analysis of cyber attacks, and through this, the analysis of logs and events that occur innumerable times is automated and intelligent through this. The level of response has been raised in the overall aspect by making it possible to predict and block the continuous occurrence of cyberattacks. And after applying AI security control technology, an improved integrated security control service model was newly proposed by integrating and solving the problem of overlapping detection of AI and SIEM into a unified breach response process(procedure).

The application of model predictive control for multi-loop control structure (다중루프 제어구조에의 모델예측제어의 적용)

  • 문혜진;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1400-1403
    • /
    • 1996
  • In this study, we applied the model predictive control(MPC) to Multi-loop control structure. Since MPC has many advantage for MIMO process and constraints handling, it induces the better performance to apply MPC to multi-loop control. And we suggest the advanced method to reduce the calculation load using the wavelet transform. It shows the possibility to substitute the existing PID control based structure with MPC.

  • PDF

Study on Optical Control Layer for Micro Pattern Shape Change Using Thermal Reflow Process (Thermal Reflow 공정 적용 Micro Pattern 형상 변화를 통한 광 향상 구조층 연구)

  • Seong, Min-Ho;Cha, Ji-Min;Moon, Seong-Cheol;Ryung, Si-Hong;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.306-313
    • /
    • 2015
  • In this study, the change of optical characteristics was studied according to the micro optical pattern provided by photo lithography followed by thermal reflow process. The shape and luminance variation with micro pattern was evaluated by SEM and spectrometers. Also, we analyzed the luminance characteristics using the 3D-optical simulation (Optis works) program. As a result, we found that the radius of curvature(R) in micro pattern is decreased up to 77%($150^{\circ}C$) compared to the radius of curvature at the condition $100^{\circ}C$, which is caused by efficient reflow of organic material without chemical changes. The highest enhancement of brightness with optimum micro pattern was obtained at the condition of $120^{\circ}C$ reflow process. The brightness gain with optical micro patterns is more than 15% at the condition of R=16.95 um, ${\Theta}=77.14^{\circ}$ compared to original optical source. The results of light simulation with various radius of curvature and side angle of pattern shows the similar result of experiment evaluation of light behavior on optical micro patterns. It is regarded that the more effect on light enhancement was contributed by side angle which is effective factor on light reflection, rather than the curvature of micro-patterns.

The Effect of Process Variables on Strip Width Spread and Prediction in Hot Finish Rolling (열간 사상압연에서 스트립 폭 퍼짐의 공정변수 영향 및 예측에 관한 연구)

  • Jeon, J.B.;Lee, K.H.;Han, J.G.;Jung, J.W.;Kim, H.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Dimensional accuracy of hot coil is improved by precise control of thickness profiles, flatness, width and winding profile. Especially, precise width control is important because yield could be increased significantly. Precise width control can be improved by predicting the amount of width spread. The purpose of this study is to develop the advanced prediction model for width spread in hot finish rolling for controlling width precisely. FE-simulations were performed to investigate the effect of process variables on width spread such as reduction ratio, forward and backward tension and initial width at each stand. From the statistical analysis of simulated data, advanced model was developed based on the existing models for strip width spread. The experimental hot rolling trials showed that newly developed model provided fairly accurate predictions on the strip width spread during the whole hot finishing rolling process.

Adjusting GPC Control Parameters Based on Gain and Phase Margins

  • Haeri, Mohammad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1838-1842
    • /
    • 2004
  • Gain and phase margins of a first order plus delayed time (FOPDT) process controlled by generalized predictive controller (GPC) are related to the control parameters ${\lambda}$ (control move suppression parameter) and ${\alpha}$ (smoothing filter coefficient) and the normalized delay of the process. Variation ranges of gain and phase margins are determined. It is shown that the margins cannot be assigned independently for a wide range of variation and the range is narrowing by increase of the normalized delay of the process. And finally curves are given to use for adjustment of the controller parameters in order to obtain a specific pair of gain and phase margins.

  • PDF