• 제목/요약/키워드: advanced nonlinear finite element

검색결과 90건 처리시간 0.027초

부착과 비부착된 프리스트레스트 콘크리트보의 휨 모델 (Flexural Modeling of Bonded and Unbonded Prestressed Concrete Beam)

  • 김민경;이차돈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.467-470
    • /
    • 1999
  • An analytical method based on the nonlinear layered finite element method is developed to simulate overall load-deflection behavior of bonded and unbonded prestressed concrete beams. The model which uses rather advanced numerical technique for iterative convergence to equilibrium can be regarded as superior one compared to the models mainly based on either load control or displacement control methods. Model predictions were compared with preceding experimental results and it was observed that there were good agreements between them.

  • PDF

Nonlinear Aeroelastic Instability of a Supersonic Missile Wing. with Pitch Axis Freeplay

  • Kim, Dong-Hyun;Lee, In;Paek, Seung-Kil
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.53-62
    • /
    • 2003
  • In this study, nonlinear aeroelastic characteristics of an supersonic missile wing with strong shock interferences are investigated. The missile wing model has a freeplay structural nonlinearity at its pitch axis. To practically consider the effects of freeplay structural nonlinearity, the fictitious mass method is applied to structural vibration analysis based on finite element method. Nonlinear aerodynamic flows with unsteady shock waves are also considered in supersonic flow regions. To solve the nonlinear aeroelastic governing equations including the freeplay effect, a modal-based coupled time-marching technique based on the fictitious mass method is used in the time-domain. Various aeroelastic computations have been performed for the nonlinear wing structure model. Linear and nonlinear aeroelastic analyses have been conducted and compared with each other in supersonic flow regions. Typical nonlinear limit cycle oscillations and phase plots are presented to show the complex vibration phenomena with simultaneous fluid-structure nonlinearities.

확률변수의 상관성을 고려한 사장교의 확률유한요소해석 및 신뢰성해석 (The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Considered to Correlation of the Random Variable)

  • 한성호;신재철
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.21-33
    • /
    • 2006
  • 사장교 구조물을 대상으로 확률유한요소법을 신뢰성이론에 적합하도록 정식화하여 신뢰성해석을 보다 효율적으로 수행하고자 한다. 사장교의 초기평형해석을 수행한 후, 섭동법을 이용하여 선형 비선형 확률유한요소해석을 수행할 수 있으며, 확률변수의 상관성에 따른 신뢰성해석을 수행할 수 있는 프로그램을 작성하였다. 작성된 프로그램을 이용하여 사장교의 응답해석을 검토한 결과, 확률변수의 상호간 상관성에 따른 절점변위, 부재력 및 케이블긴장력에 대한 분산특성을 정량적으로 평가할 수 있었다. 또한 신뢰성지수 및 파괴확률을 검토하여 사장교 구조물의 안전성을 명확하게 파악하였다.

적층된 복합소재 경사판의 기하학적 비선형 동적 거동에 미치는 매개변수 영향 (Parametric effects on geometrical nonlinear dynamic behaviors of laminated composite skew plates)

  • 이상열
    • Composites Research
    • /
    • 제25권6호
    • /
    • pp.217-223
    • /
    • 2012
  • 본 연구는 복합소재로 구성된 적층 경사판의 비선형 동적 거동을 분석한다. 1차 전단 변형 판이론에 기반하여, 비선형 동적 방정식의 해는 Newmark 방법과 Newton-Raphson 반복법을 혼용하여 적용하여 산정하였다. 본 연구에서 개발한 유한요소 해석프로그램을 사용하여 개구부의 크기 또는 판의 경사각, 그리고 적층 배열의 변화가 판의 기하학적 비선형 거동에 미치는 영향을 상세 분석하였다. 몇 가지 수치해석 결과는 기존 연구자로부터 얻어진 결과와 잘 일치하는 것으로 나타났다. 본 연구의 새로운 결과는 경사 적층 구조의 중앙 개구부의 크기 또는 판의 경사각도, 그리고 적층 배열과의 중요한 상호관계를 보여준다. 몇 가지 수치예제는 개구부를 갖는 적층 판구조를 설계하는데 필요한 가이드라인을 제시하였다.

Improved numerical approach for the bond-slip behavior under cyclic loads

  • Kwak, H.G.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.663-677
    • /
    • 1997
  • Bond-slip behavior between reinforcement and concrete under push-pull cyclic loadings is numerically investigated based on a reinforcement model proposed in this paper. The equivalent reinforcing steel model considering the bond-slip effect without taking double nodes is derived through the equilibrium at each node of steel and the compatibility condition between steel and concrete. Besides a specific transformation algorithm is composed to transfer the forces and displacements from the nodes of the steel element to the nodes of the concrete element. This model first results in an effective use in the case of complex steel arrangements where the steel elements cross the sides of the concrete elements and second turns the impossibility into a possibility in consideration of the bond-slip effect in three dimensional finite element analysis. Finally, the correlation studies between numerical and experimental results under the continuously repeated large deformation stages demonstrate the validity of developed reinforcing steel model and adopted algorithms.

A branch-switching procedure for analysing instability of steel structures subjected to fire

  • Morbioli, Andrea;Tondini, Nicola;Battini, Jean-Marc
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.629-641
    • /
    • 2018
  • The paper describes the development of a two-dimensional (2D) co-rotational nonlinear beam finite element that includes advanced path-following capabilities for detecting bifurcation instability in elasto-plasticity of steel elements subjected to fire without introducing imperfections. The advantage is twofold: i) no need to assume the magnitude of the imperfections and consequent reduction of the model complexity; ii) the presence of possible critical points is checked at each converged time step based on the actual load and stiffness distribution in the structure that is affected by the temperature field in the elements. In this way, the buckling modes at elevated temperature, that may be different from the ones at ambient temperature, can be properly taken into account. Moreover, an improved displacement predictor for estimating the displacement field allowed significant reduction of the computational cost. A co-rotational framework was exploited for describing the beam kinematic. In order to highlight the potential practical implications of the developed finite element, a parametric analysis was performed to investigate how the beam element compares both with the EN1993-1-2 buckling curve and with experimental tests on axially compressed steel members. Validation against experimental data and numerical outcomes obtained with commercial software is thoroughly described.

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

중앙개구부를 갖는 복합신소재 적층 구조의 비선형 동적 거동 (Nonlinear Dynamic Behaviors of Laminated Composite Structures Containing Central Cutouts)

  • 지효선;이상열
    • 한국강구조학회 논문집
    • /
    • 제23권5호
    • /
    • pp.607-614
    • /
    • 2011
  • 본 연구는 복합신소재로 구성된 중앙 개구부를 갖는 적층 판구조의 비선형 동적 거동을 다룬다. 1차 전단 변형 판이론에 기반하여, 비선형 동적 방정식의 해는 Newmark 방법과 Newton-Raphson 반복법을 혼용하여 적용하여 산정하였다. 본 연구에서 개발한 유한요소 해석프로그램을 사용하여 개구부의 크기와 적층 배열의 변화가 판의 기하학적 비선형 거동에 미치는 영향을 상세 분석하였다. 몇 가지 수치해석 결과는 기존 연구자로부터 얻어진 결과와 잘 일치하는 것으로 나타났다. 본 연구의 새로운 결과는 경사 적층 구조의 중앙 개구부의 크기와 적층 배열과의 중요한 상호관계를 보여준다. 몇 가지 수치예제는 개구부를 갖는 적층 판구조를 설계하는데 필요한 가이드라인을 제시하였다.

ANSYS 비선형 정적설계민감도해석 외부모듈 개발 (Development of Nonlinear Static Design Sensitivity Analysis Based ANSYS)

  • 최병남;정재준;유정훈;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.543-547
    • /
    • 2001
  • CAE has been settled down to an indispensable tool for the simulation of a mechanical system according to the development of computer-aided analysis rapidly. Particularly finite element programs have advanced to the one of most valuable things in the filed of CAE due to the remarkable progress in the implementation. But since this analysis tool mostly provides the result of the analysis, it cannot satisfy designers who are seeking for information to improve their designs. Therefore, design sensitivity analysis or optimization module has been incorporated into commercial FEA programs to satisfy the desire of designers since 1990s. Design sensitivity analysis is to compute the rate of change of response with respected to design variable. Design sensitivity analysis is classfied into static design sensitivity analysis, Eigenvalue design sensitivity analysis and dynamic design sensitivity analysis. In this research, it will be presented to nonlinear static design sensitivity analysis formulation and nonlinear static design sensitivity analysis external module based ANSYS have been developed and illustrated an example to verify the developed module.

  • PDF

OPTIMIZATION OF LAMINATED COMPOSITE FOR BUCKLING PERFORMANCE

  • Cho, Hee-Keun
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.560-565
    • /
    • 2007
  • Motivated by needs such as those in the aerospace industry, this paper demonstrates ability to significantly increase buckling loads of perforated composite laminated plates by synergizing FEM and a genetic optimization algorithm (GA). Plate geometry is discretized into specially-developed 3D degenerated eight-node shell isoparametric layered composite elements. General shell theory, involving incremental nonlinear finite element equilibrium equation, is employed. Fiber orientation within individual plies of each element is controlled independently by the genetic algorithm. Eigen buckling analysis is performed using the subspace iteration method. Available results demonstrate the approach is superior to more conventional methodologies such as modifying ply thickness or the stacking sequence of individual rectilinear plies having common fiber orientation through the plate.

  • PDF