• 제목/요약/키워드: advanced indentation technique

검색결과 21건 처리시간 0.023초

비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가 (Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds)

  • 최철영;김준기;홍재근;염종택;박영도
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향 (Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition)

  • 허용석;박상현;한인섭;우상국;정연길;백운규;이기성
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.

나노인덴테이션을 이용한 Ti(C0.7N0.3)-NbC-Ni 써멧 구성상의 경도평가 (Measurement of Hardness of Constituent Phases in Ti(C0.7N0.3)-NbC-Ni Cermets Using Nanoindentation)

  • 김성원;김대민;강신후;류성수;김형태
    • 한국분말재료학회지
    • /
    • 제15권6호
    • /
    • pp.482-488
    • /
    • 2008
  • The indentation technique has been one of the most commonly used techniques for the measurement of the mechanical properties of materials due to its experimental ease and speed. Recently, the scope of indentation has been enlarged down to the nanometer range through the development of instrumentations capable of continuously measuring load and displacement. In addition to testing hardness, the elastic modulus of submicron area could be measured from an indentation load-displacement (P-h) curve. In this study, the hardness values of the constituent phases in Ti($C_{0.7}N_{0.3}$)-NbC-Ni cermets were evaluated by nanoindentation. SEM observation of the indented surface was indispensable in order to separate the hardness of each constituent phase since the Ti($C_{0.7}N_{0.3}$)-based cermets have relatively inhomogeneous microstructure. The measured values of hardness using nanoindentation were ${\sim}20$ GPa for hard phase and ${\sim}10$ GPa for binder phase. The effect of NbC addition on hardness was not obvious in this work.

질화규소 이층 층상재료의 접촉파괴거동 (Contact Fracture behavior of Silicon Nitride Bilayer)

  • 이기성;이승건;김도경
    • 한국재료학회지
    • /
    • 제8권4호
    • /
    • pp.293-298
    • /
    • 1998
  • 질화규소로 코팅된 질화규소-질화붕소 이층 층상복합재료의 접촉하중에 의한 파괴거동을 고찰하였다. 그 결과 코팅층내에서 새로운 종류의 균열들이 발견되었고, 이러한 균열들은 기하학적으로 원추 모양을 가짐을 확인하였다. 외부에서 가한 하중의 에너지는 코팅층 뿐 아니라 damage를 흡수할 수 있는 기판층 내로 분산되어 코팅층에서 시작된 균열들의 전파가 억제되었다.

  • PDF

Characterization and Application of DLC Films Produced by New Combined PVD-CVD Technique

  • Chekan, N.M.;Kim, S.W.;Akula, I.P.;Jhee, T.G.
    • 열처리공학회지
    • /
    • 제23권2호
    • /
    • pp.75-82
    • /
    • 2010
  • A new advanced combined PVD/CVD technique of DLC film deposition has been developed. Deposition of a DLC film was carried out using a pulsed carbon arc discharge in vapor hydrocarbon atmosphere. The arc plasma enhancing CVD process promotes dramatic increase in the deposition rate and decrease of compressive stress as well as improvement of film thickness uniformity compared to that obtained with a single PVD pulsed arc process. The optical spectroscopy investigation reveals great increase in radiating components of $C_2$ Swan system molecular bands due to acetylene molecules decomposition. AFM, Raman spectroscopy, XPS and nano-indentation were used to characterize DLC films. The method ensures obtaining a new superhard DLC nano-material for deposition of protective coatings onto various industrial products including those used in medicine.

비파괴적 연속압입시험: 대형구조물로부터 nano소재까지의 응용연구 (Nondestructive Advanced Indentation Technique: The Application Study Industrial Structure to Nanomaterial)

  • 전은채;권동일;최열;장재일
    • 비파괴검사학회지
    • /
    • 제22권4호
    • /
    • pp.333-346
    • /
    • 2002
  • 재료에 가해지는 하중에 따른 변형정도를 측정하는 연속압입시험은 비파괴적으로 재료의 기계적 물성을 직접 평가할 수 있는 기법으로, 하충의 범위에 따라 macro, micro 그리고 nano의 세 범위로 나눌 수 있다. Macro 범위는 kgf 영역에서 사용되어, 국부 영역의 인장물성과 신뢰성 저하의 주요 원인인 잔류응력을 구할 수 있으며, 최근에는 국내기술에 의해 관련 기기와 기술이 개발되었다. 산업구조물, 사용중인 배관 등 기존 시험법으로는 평가하기 힘든 소재의 신뢰성 평가에 많은 활용이 이루어지고 있다. Micro 범위는 gf 영역으로, macro 범위보다 높은 분해능에 의해 용접부 등 물성 구배가 존재하는 재료에 사용된다. 한편 mgf 영역의 극미소하중에 적용되는 nanoindentation technique은 기본적으로 경도와 탄성계수를 구할 수 있으며, 잔류응력, 인장물성 등을 유도하는 연구가 진행중이다. 반도체 재료, 다 상 재료, 바이오 소재 등에서 많은 활용이 이루어지고 있으며, 그 수요가 급격히 증가하고 있는 추세이다. 이러한 연구 들올 바탕으로 하여 국제 표준 규격 및 국내 표준 규격의 제정이 추진 중이다.

마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가 (Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration)

  • 이현근;김도경
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.

기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구 (A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique)

  • 조상현;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

화학증착법에 의하여 제조된 탄화규소 코팅층의 기계적 특성 (Mechanical Properties of Chemical Vapor Deposited SiC Coating Layer)

  • 이현근;김종호;김도경
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.492-497
    • /
    • 2006
  • SiC coating has been introduced as protective layer in TRISO nuclear fuel particle of High Temperature Gas cooled Reactor (HTGR) due to excellent mechanical stability at high temperature. In order to inhibit the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. ]n present work, thin silicon carbide coating was fabricated using chemical vapor deposition process with different microstructures and thicknesses. Processing condition and surface status of substrate.affect on the microstructure of SiC coating layer. Sphere indentation method on trilayer configuration was conducted to measure the fracture strength of the SiC film. The fracture strength of SiC film with different microstructure and thickness were characterized by trilayer strength measurement method nanoindentation technique was also used to characterize the elastic modulus and th ε hardness of the SiC film. Relationships between microstructure and mechanical properties of CVD SiC thin film were discussed.