• 제목/요약/키워드: advanced driver assistance system (ADAS)

검색결과 68건 처리시간 0.028초

영상기반 차량인식 기법을 이용한 교통류 추정에 관한 연구 (A Study on Estimation of Traffic Flow Using Image-based Vehicle Identification Technology)

  • 김민정;정대한;김회경
    • 한국ITS학회 논문지
    • /
    • 제18권6호
    • /
    • pp.110-123
    • /
    • 2019
  • 교통 데이터는 교통계획이나 교통시스템 운영에 필요한 기초 자료이며 최근 ADAS 카메라로 측정한 선행 차량과의 거리를 이용하여 교통류를 파악하는 방법이 시도되고 있다. 본 연구는 영상기반 차량인식의 거리오차를 반영한 미시적 시뮬레이션 분석을 통해 교통류를 추정하기 위한 ADAS 차량의 활용 가능성을 살펴보았다. 차로수, 교통수요, 프로브 차량의 점유율(MPR), 시공간 검지영역 등에 따른 교통류 추정치의 표준 평균 제곱근 오차를 통해 분석을 수행하였다. 분석결과, ADAS 카메라의 최대 인식거리의 한계로 저밀도 교통류(LOS A, LOS B)의 추정치는 신뢰할 수 없는 수준이다. 다차로나 교통수요가 크고 점유율(MPR)이 높을 경우 추정치의 신뢰성이 개선될 수 있지만, 인위적으로 점유율(MPR)을 높이는 것은 현실적으로 어려움이 있다. 또한, 검지영역의 시간범위를 연장함으로써 추정치의 신뢰성을 개선할 수 있지만, 가장 크게 영향을 미치는 것은 ADAS 차량의 주행행태로서 해당 차량이 도로의 교통류와 상이한 주행행태를 보일 경우 그 추정치는 신뢰할 수 없게 된다. 결론적으로 모든 교통류를 정확히 추정하지는 못 하지만 ADAS 카메라의 성능이나 기능을 개선함으로써 ADAS 차량의 활용 가능성은 확대될 것이다.

그림자 정보를 이용한 HSV 컬러 모델 기반의 전방 차량 검출 및 차선 정보 검출 (HSV Color Model Based Front Vehicle Extraction and Lane Detection using Shadow Information)

  • 한상훈;조형제
    • 한국멀티미디어학회논문지
    • /
    • 제5권2호
    • /
    • pp.176-190
    • /
    • 2002
  • 차량이 증가함에 따라 전방의 상황을 운전자에게 알려주기 위한 운전자 도움 시스템(Advanced Drivers Assistance System)과 같은 체계가 요구된다. 본 논문에서는 전방의 상황을 운전자에게 알려 주기 위한 기본과정으로 연속된 컬러 영상으로부터 영상처리만을 이용하여 전방의 차량과 차선을 검출하는 방법을 제안한다. 도로 전방의 상황은 차량이 많다고 하더라도 도로의 영역이 많은 부분을 차지하고 있으며, 차량이 있는 경우에 차량의 하단에 그림자와 같이 어두운 영역이 존재하는 점을 이용하여 전방의 차량을 검출한다. 그리고 차선은 그림자 영역의 반대 특징으로 횐색계열이라는 점을 이용하여 차선 정보를 추출한다. 이 방법은 도로가 혼잡하거나 도로상에 방향 표시가 있는 경우에도 좋은 결과를 보인다. 차량과 차선을 검출하는데는 HSV 컬러 모델에서 태도 성분과 명도 성분을 이용하여 후보점을 검출하고, 차량과 타선의 영역을 검출하며 에지 정보를 이용하여 차량의 영역을 결정한다. 그리고 검출된 차량 영역이 이전 프레임의 차량 영역과 같은 차량인지 알기 위해서는 HSV 성분과 위치 정보의 통계적 특징을 이용한다. 제안된 방식의 효과를 검증하기 위해 노트북 PC와 PC용 CCD 카메라로 도로에서의 영상을 촬영하고 차량 및 차선 검출 알고리즘을 적용한 처리 시간, 정확도 및 차량검지 결과를 보인다.

  • PDF

합성곱 신경망 기반 야간 차량 검출 방법 (Night-time Vehicle Detection Method Using Convolutional Neural Network)

  • 박웅규;최연규;김현구;최규상;정호열
    • 대한임베디드공학회논문지
    • /
    • 제12권2호
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

그림자 영역에서 강인한 지역 특징점 기반의 차선인식 기법 (Robust Lane Detection Algorithm in Shadow Area by using Local Feature Point)

  • 김태동;이강;정경훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.194-197
    • /
    • 2016
  • 자동차 산업이 발전하면서 안정적인 주행과 운전자의 편의성을 위한 지능형운전자보조시스템인 ADAS (Advanced Driver Assistance System)가 이슈가 되고 있다. 차선인식의 결과에 따라 차선이탈 경고시스템의 성능이 달라지기 때문에 차선인식은 ADAS에서 매우 중요한 핵심적인 기술이라 할 수 있다. 이에 본 논문에서는 그림자 영역과 같이 밝기의 분포가 균일하지 않는 환경에서 강인하게 동작하는 차선인식 알고리즘을 제안하였다, 지역적인 밝기 특징을 고려하여 차선에 해당하는 특징점을 추출하며, 추출된 특징점 가운데 이상치(outlier)를 제거하기 위해 RANSAC (RANdom SAmple Consensus) 알고리즘을 이용하여 차선을 검출한다. 또한 RANSAC 알고리즘에서 신뢰도가 높은 차선이 검출되면 그 주위에 특징점을 추출하기 위한 관심영역을 설정함으로써 안정적인 차선 검출이 가능하도록 하였다.

  • PDF

특징 검출이 어려운 환경에서 CLAHE 기반 도로 문자 정보 검출 (A Robust Road Sign Information Detection Method In Dark and Noisy Scene Using CLAHE)

  • 강석준;한동석
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.361-363
    • /
    • 2016
  • 현재 차량 내 운전자에게 편의성과 안전성을 제공하는 시스템이 활발히 개발 중이고 향후 ADAS(Advanced Driver Assistance System)와 스마트 자동차에서 영상 정보를 이용한 물체 추적과 분석은 매우 중요한 부분을 차지하고 있다. 영상에서 얻을 수 있는 정보 중 현재 도로의 이정표 정보는 중요한 분석 정보로 사용된다. 하지만 국내 도로표지판 검출 연구의 경우 유럽과 북미와 비교하여 연구 개발이 활발히 진행되고 있지 않다. 국내의 경우 도로 이정표에서 영문자뿐만 아니라 한글 문자 정보까지 포함하고 있어 검출이 쉽지 않다. 또한 비교적 밝고 잡음이 적은 검출하기 좋은 환경에서는 검출이 잘 되지만 명암이 뚜렷하지 않고 잡음이 많은 환경에서는 도로 이정표 문자 검출이 어렵다. 이에 본 논문에서는 CLAHE(Contrast-Limited Adaptive Histogram Equalization) 방법을 적용하여 영상이 어둡고 잡음이 많은 환경에서 국내 도로 이정표의 문자 정보를 얻는다. 실험 결과, 기존 방법에 비해 문자 영역 검출 성능이 향상되었다.

  • PDF

가변 임계값 색상 필터를 사용한 교통 표지판 영역 추출 (Traffic Sign Area Detection by using Color Filtering with Variable Threshold)

  • 장준;정경훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.99-102
    • /
    • 2016
  • 교통표지판 검출 및 인식은 차량의 자율주행 및 ADAS (Advanced Driver Assistance System)의 필수적인 요소이다. 교통표지판의 각종 표식을 인식하기 위해서는 먼저 교통표지판 영역을 검출해야 하며, 이 작업은 통상적으로 교통표지판에 포함된 빨간색을 추출하는 컬러 필터링을 통해 이루어진다. 하지만 차량 영상에 나타나는 색상 성분은 태양광의 방향이나 날씨 등에 상당한 영향을 받으며 이러한 조도 환경은 차량이 주행하게 되면 시간적으로도 수시로 변화한다. 더군다나 사용하는 카메라의 내부적인 특성에 따라서도 색상 성분의 분포가 달라지기 때문에 컬러 필터링을 위한 임계값은 고정값을 사용하기 보다는 적응적으로 변화시킬 필요가 있다. 본 논문에서는 다양한 조도 환경과 다양한 카메라 종류에 따라서 영상 내 교통표지판의 빨간색 성분의 분포를 분석하고 이를 바탕으로 임계값을 가변적으로 설정하는 방법을 제안한다. 그리고 모의실험을 통해 제안 방법을 적용하면 고정된 임계값을 사용한 방법보다 조도변화에 강인하게 교통표지판 영역을 검출할 수 있음을 확인하였다.

  • PDF

색상 정보와 HOG 특징을 이용한 실시간 도로표지판 검출 알고리즘 (Real-time Traffic Sign Detection Algorithm by Using Color Information and HOG Feature)

  • 김태동;이승현;정광훈;강동욱;정경훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.513-515
    • /
    • 2015
  • 최근 지능형 차량과 ADAS(Advanced Driver Assistance System) 개발에 있어 차량 영상을 이용한 도로 정보 분석이 중요한 화두로 떠오르고 있다. 다양한 도로 정보 중에서 도로표지판 검출 및 판단은 차량 운행 환경을 파악할 수 있는 중요한 과정이 될 수 있다. 이에 본 논문에서는 차량 영상에서의 색상 정보를 이용하여 표지판의 후보 영역을 추출(Candidate Generation)하고, 후보 영상에 대한 HOG(Histogram of Gradient) 특징 분석을 통해 도로표지판 여부와 그 종류를 판단(Object Classification)하는 알고리즘을 구현하였다. 또한 구현 알고리즘은 실시간 처리가 가능한 속도를 보여주어 지능형 차량 또는 ADAS에서의 실제 적용이 가능하도록 하였다.

  • PDF

HOG와 컬러정보 기반의 2단계 보행자 탐지 시스템 (HOG and Color Information based 2-Stages Pedestrian Detection System)

  • 장규진;김진평;김문현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1365-1368
    • /
    • 2015
  • 컴퓨터 비전 분야의 활용영역과 시장성이 증대하면서 가장 많이 사용되는 객체인식 및 탐지 기술과 관련된 연구는 꾸준히 진행되고 있다. 최근에는 ADAS(Advanced Driver Assistance Systems)와 특징적인 객체를 인식 추적할 수 있는 지능형 감시시스템에서의 가장 핵심적인 기술로 자리 잡고 있다. 본 연구에서는 보행자 탐지에 사용하는 특징들 중에서 조명변화에 강건한 HOG와 Cascade-Adaboost를 기반으로 보행자 탐지 모델을 후보영역을 검출하고 검출된 영역에서 컬러정보를 추출하여 의사결정 트리에 적용시켜 최종 보행자를 탐지하는 시스템을 제안한다.

Real-time Speed Limit Traffic Sign Detection System for Robust Automotive Environments

  • Hoang, Anh-Tuan;Koide, Tetsushi;Yamamoto, Masaharu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.237-250
    • /
    • 2015
  • This paper describes a hardware-oriented algorithm and its conceptual implementation in a real-time speed limit traffic sign detection system on an automotive-oriented field-programmable gate array (FPGA). It solves the training and color dependence problems found in other research, which saw reduced recognition accuracy under unlearned conditions when color has changed. The algorithm is applicable to various platforms, such as color or grayscale cameras, high-resolution (4K) or low-resolution (VGA) cameras, and high-end or low-end FPGAs. It is also robust under various conditions, such as daytime, night time, and on rainy nights, and is adaptable to various countries' speed limit traffic sign systems. The speed limit traffic sign candidates on each grayscale video frame are detected through two simple computational stages using global luminosity and local pixel direction. Pipeline implementation using results-sharing on overlap, application of a RAM-based shift register, and optimization of scan window sizes results in a small but high-performance implementation. The proposed system matches the processing speed requirement for a 60 fps system. The speed limit traffic sign recognition system achieves better than 98% accuracy in detection and recognition, even under difficult conditions such as rainy nights, and is implementable on the low-end, low-cost Xilinx Zynq automotive Z7020 FPGA.

Performance Analysis of GPS/BDS Integrated Precise Positioning System Considering Visibility in Urban Environments

  • Noh, Jae Hee;Lee, Sun Yong;Lim, Deok Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권1호
    • /
    • pp.31-40
    • /
    • 2019
  • In recent years, Intelligent Transport Systems (ITS) and Autonomous Vehicle Technology have actively studied around the world. In order to achieve the purpose of Advanced Driver Assistance System (ADAS) and Autonomous Vehicle Technology, it must be obtained accurate and reliable positioning. However, the problem of positioning in the urban area is a low position accuracy caused by the reduction of the number of visible satellites due to high buildings. In this paper, we analyzed the availability of precise positioning system in urban area are using GPS/BDS integrated system. For this study, GPS and BDS satellite signals were collected using two low-cost receivers in the open sky and a designed software based platform for precise positioning performance analysis. And we analyzed the precise positioning performance by changing the mask angle considering the urban area. From the results, it can be confirmed that the performance of precise positioning of GPS only and BDS only decrease in the environment where mask angle is $40^{\circ}$ to $45^{\circ}$, however, GPS/BDS integrated system maintains high performance of precise positioning.