• Title/Summary/Keyword: advanced coatings

Search Result 260, Processing Time 0.021 seconds

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

Improvement of Impact Resistance of B4C Tile Inserted B4Cp/Al7075 Hybrid Composites Through Interface Control (B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재의 계면 제어를 통한 내충격 특성의 향상)

  • Park, Jongbok;Lee, Taegyu;Lee, Donghyun;Cho, Seungchan;Lee, Sang-Kwan;Hong, Soon Hyung;Ryu, Ho Jin
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.235-240
    • /
    • 2020
  • In this study, in order to improve the impact resistance of the B4C tile-inserted B4Cp/Al7075 hybrid composite, a control method of the B4C/Al7075 interface was developed and the characteristics of the controlled interface were analyzed. B2O3, Ni, and Si were coated on the B4C tile surface using additional thermal oxidation, electroless plating, and plasma spraying. The coated B4C tile is inserted into the B4Cp/Al7075 composite material using the liquid pressurization method. Interfacial energy, bonding strength, and impact resistance were measured to analyze the effect of the coating. All coatings enhanced interfacial energy, bonding strength, and impact resistance, and in particular, it was confirmed that the impact resistance increased by 86.8% when B2O3 coating was used. This study is significant in developing and analyzing a core surface treatment method that improves the performance of B4C/Al series composites, which are attracting attention as next-generation lightweight amour and bulletproof materials.

Effect of magnesium and calcium phosphate coatings on osteoblastic responses to the titanium surface

  • Park, Ki-Deog;Lee, Bo-Ah;Piao, Xing-Hui;Lee, Kyung-Ku;Park, Sang-Won;Oh, Hee-Kyun;Kim, Young-Joon;Park, Hong-Ju
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.402-408
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the surface properties and in vitro bioactivity to osteoblasts of magnesium and magnesium-hydroxyapatite coated titanium. MATERIALS AND METHODS. Themagnesium (Mg) and magnesium-hydroxyapatite (Mg-HA) coatings on titanium (Ti) substrates were prepared by radio frequency (RF) and direct current (DC) magnetron sputtering.The samples were divided into non-coated smooth Ti (Ti-S group), Mg coatinggroup (Ti-Mg group), and Mg-HA coating group (Ti-MgHA group).The surface properties were evaluated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness was evaluated by atomic force microscopy (AFM). Cell adhesion, cell proliferation and alkaline phosphatase (ALP) activity were evaluated using MC3T3-E1 cells. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed. RESULTS. Cross-sectional SEM images showed that Mg and Mg-HA depositionson titanium substrates were performed successfully. The surface roughness appeared to be similaramong the three groups. Ti-MgHA and Ti-Mg group had improved cellular responses with regard to the proliferation, alkaline phosphatase (ALP) activity, and bone-associated markers, such as bone sialoprotein (BSP) and osteocalcin (OCN) mRNA compared to those of Ti-S group. However, the differences between Ti-Mg group and Ti-MgHA group were not significant, in spite of the tendency of higher proliferation, ALP activity and BSP expression in Ti-MgHA group. CONCLUSION. Mg and Mg-HAcoatings could stimulate the differentiation into osteoblastic MC3T3-E1 cells, potentially contributing to rapid osseointegration.

A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating (Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구)

  • Kwon, Hyuksung;Kim, Minjoong;So, Jongho;Shin, Jae-Soo;Chung, Chin-Wook;Maeng, SeonJeong;Yun, Ju-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

Magnetic Properties of Fe-6.0 wt%Si Alloy Dust Cores Prepared with Phosphate-coated Powders (인산염 피막처리 분말을 사용한 Fe-6.0 wt%Si 합금 압분자심의 자기적 특성)

  • Jang, D.H.;Noh, T.H.;Kim, K.Y.;Choi, G.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Dust cores (compressed powder cores) of $Fe-6.0wt\%Si$ alloy with a size of $35\~180\;{\mu}m$ in diameter have been prepared by phosphate coatings and annealings at $600\~900^{\circ}C$ for 1 h in nitrogen atmosphere. Further the magnetic and mechanical properties of the powder cores were investigated. As a general trends, the compressive strength and core loss decreased with the increase in annealing temperature. When annealed at $800^{\circ}C$, the compressive strength was 15 kgf, the permeability and quality factor were 74 and 26, respectively. Moreover the core loss at 50 kHz and 0.1 T induction was $750\;mW/cm^3$, and the percent permeability under the static field of 50 Oe was estimated to be about 78. In addition, the cut-off frequency in the cure representing the frequency dependence of effective permeability was measured to be around 200 kHz. These properties of the $Fe-6.0wt\%Si$ alloy dust cores could be considered to be due to the good insulation effect of iron-phosphate coats, the decrease in magnetocrystalline anisotropy and saturation magnetostriction and the increase in electric resistivity.

$Si_3N_4$ Coating for Improvement of Anti-oxidation and Anti-wear Properties by Low Pressure Chemical Vapor Deposition (저압화학기상증착법에 의한 $Si_3N_4$ 내산화.내마모 코팅)

  • Lee, Seung-Yun;Kim, Ok-Hee;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.835-841
    • /
    • 1995
  • The deposition properties of Si$_3$N$_4$ deposited by low pressure chemical vapor deposition were studied to evaluate Si$_3$N$_4$as part of multi-layer coatings for anti-oxidation and anti-wear coating of graphite in the propellant-burning environment. Si$_3$N$_4$was deposited on the pack-SiC coated graphite and the tendencies of deposition rate and surface morphology changes with temperatures and reaction gas ratios were investigated. In low deposition temperatures the deposition rate increased tilth increasing temperature but in high temperatures the deposition rate decreased with increasing temperature. The grain size of Si$_3$N$_4$decreased with increasing temperature. In condition that the range of reaction gas ratios is 20$\leq$NH$_3$/SiH$_4$$\leq$40, the deposition rate and surface morphology did not change. The Si$_3$N$_4$deposited at 800~130$0^{\circ}C$ was amorphous, and by post-annealing at 130$0^{\circ}C$ in a $N_2$ambient, the Si$_3$N$_4$crystalized.

  • PDF

An Electrochemical Evaluation of the Corrosion Properties of the Steel with the Type and the Thickness of Metallizing Coatings (금속용사 코팅제의 종류 및 두께에 따른 강재 내식성의 전기화학적 평가)

  • Kang, Myeong-Sik;Eom, Sung-Hyun;Cho, Yeon-Chul;Ahn, Jae-Woo;Kim, Seong-Soo;Lee, Jeong-Bae
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.55-62
    • /
    • 2016
  • Steel structures exposed to extremely corrosive environment like marine environments and industrial area are generally manufactured by applying various protection treatment to increase their lifetime. Metal spraying is one of the protection methods to overcome some drawbacks of the widely employed technologies. Therefore, lots of research needs to be done to improve the corrosion resistance of steel structures. In this study, the corrosion resistance of steel structures was evaluated with the variation in the type and thickness of metal spray by measuring the corrosion potential and current density. As a raw material for spraying, Zn, Al and their mixture were employed to obtain coating thickness of $30{\sim}100{\mu}m$. Our data indicated that the pure zinc coating with $100{\mu}m$ showed the lowest corrosion potential. In the case of pure Al and Zn 85%-Al 15%, the corrosion potential and current density was decreased compared to pure zinc. It was found that the corrosion potential was decreased with the increase of coating thickness irrespective of the type of the coating.

A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant (원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가)

  • Lee, Jae-Rock;Seo, Min-Kang;Lee, Sang-Kook;Lee, Chul-Woo;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.809-814
    • /
    • 2005
  • In this work, the thermal properties of epoxy coating system on the liner plate in the containment structure of nuclear power plants had been examined by irradiation and design basis accident (DBA) conditions. The effect of immersion in hot water on adhesion strength of the coating system had been also studied. The glass transition temperature ($T_g$) and thermal stability of ET-5290/carbon steel A 32 epoxy coating systems were measured by DSC and TGA analyses, respectively. Contact angle measurements were used to determine the effect of immersion on the surface energetics of epoxy coating system, with a viewpoint of surface free energy. Adhesion tests were also executed to evaluate the adhesion strength at interfaces between carbon steel plate and epoxy resins. As a result, it was found that the irradiation led to an improvement of internal crosslinked structure in cured epoxy systems, resulting in significantly increasing the thermal stability, as well as the $T_g$. Also, the immersion in hot water made a role in the post-curing of epoxy resins and increased the mechanical interlocking of the network system, resulting in increasing the adhesion strength of the epoxy coating system.

Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process (유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조)

  • Hwang, Seung-Hee;Kim, Hyo-Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.143-155
    • /
    • 2020
  • Hydrophobic Organic-Inorganic (O-I) hybrid materials prepared by sol-gel process have been widely used at functional coating fields such as coatings for anti-corrosion, anti-icing, self-cleaning, anti-reflection. The key point for fabricating hydrophobic surface is to optimize the surface energy and roughness of the coating films. There are typical processes to control the surface energy and roughness which are 'In situ fabricating', 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating'. In this study, particle-binder process was used for in-situ fabrication of hydrophobic coating films. Various O-I hybrid compounds prepared using several kinds of alkoxysilane compounds were used as a binder for silica nanoparticles at particle-binder process. To study effect of fluorine content and weight ratio of particle : binder on the hydrophobicity and surface morphology, Hydrophobic coating films were prepared onto glass substrate at various content of fluorine content of O-I hybrid binder and weight ratio of particle : binder. The coating films prepared using O-I hybrid binder (GPTi-HF10) having 10 wt% of fluorine content showed the highes water contact angle (107.52±1.6°). The coating films prepared at 1:3 weight ratio of GPTi-HF10 : silica nanoparticle exhibited the highest water contact angle (130.84±1.99°).