• Title/Summary/Keyword: advanced benchmark

Search Result 150, Processing Time 0.032 seconds

Advanced two-level CMFD acceleration method for the 3D whole-core high-fidelity neutron adjoint transport calculation

  • Zhu, Kaijie;Hao, Chen;Xu, Yunlin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.30-43
    • /
    • 2021
  • In the 2D/1D method, a global adjoint CMFD based on the generalized equivalence theory is built to synthesize the 2D radial MOC adjoint and 1D axial NEM adjoint calculation and also to accelerate the iteration convergence of 3D whole-core adjoint transport calculation. Even more important, an advanced yet accurate two-level (TL) CMFD acceleration technique is proposed, in which an equivalent one-group adjoint CMFD is established to accelerate the multi-group adjoint CMFD and then to accelerate the 3D whole-core adjoint transport calculation efficiently. Based on these method, a new code is developed to perform 3D adjoint neutron flux calculation. Then a set of VERA and C5G7 benchmark problems are chosen to verify the capability of the 3D adjoint calculations and the effectiveness of TL CMFD acceleration. The numerical results demonstrate that acceptable accuracy of 2D/1D adjoint calculations and superior acceleration of TL CMFD are achievable.

A Study on Automated Stock Trading based on Volatility Strategy and Fear & Greed Index in U.S. Stock Market (미국주식 매매의 변동성 전략과 Fear & Greed 지수를 기반한 주식 자동매매 연구)

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.22-28
    • /
    • 2023
  • In this study, we conducted research on the automated trading of U.S. stocks through a volatility strategy using the Fear and Greed index. Volatility in the stock market is a common phenomenon that can lead to fluctuations in stock prices. Investors can capitalize on this volatility by implementing a strategy based on it, involving the buying and selling of stocks based on their expected level of volatility. The goal of this thesis is to investigate the effectiveness of the volatility strategy in generating profits in the stock market.This study employs a quantitative research methodology using secondary data from the stock market. The dataset comprises daily stock prices and daily volatility measures for the S&P 500 index stocks. Over a five-year period spanning from 2016 to 2020, the stocks were listed on the New York Stock Exchange (NYSE). The strategy involves purchasing stocks from the low volatility group and selling stocks from the high volatility group. The results indicate that the volatility strategy yields positive returns, with an average annual return of 9.2%, compared to the benchmark return of 7.5% for the sample period. Furthermore, the findings demonstrate that the strategy outperforms the benchmark return in four out of the five years within the sample period. Particularly noteworthy is the strategy's performance during periods of high market volatility, such as the COVID-19 pandemic in 2020, where it generated a return of 14.6%, as opposed to the benchmark return of 5.5%.

A Combined Procedure of RSM and LHS for Uncertainty Analyses of CsI Release Fraction Under a Hypothetical Severe Accident Sequence of Station Blackout at Younggwang Nuclear Power Plant Using MAAP3.0B Code

  • Han, Seok-Jung;Tak, Nam-Il;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.507-521
    • /
    • 1996
  • Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current Probabilistic safety assessment. The main objective of the present study is to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a Hypothetical severe accident sequence of a station blackout at Younggwang nuclear power plant using MAAP3. OB code as a benchmark problem. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficient (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results that can be obtained by the combined procedure proposed in the present work.

  • PDF

On the Reconstruction of Pinwise Flux Distribution Using Several Types of Boundary Conditions

  • Park, C. J.;Kim, Y. H.;N. Z. Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 1996
  • We reconstruct the assembly pinwise flux using several types of boundary conditions and confirm that the reconstructed fluxes are the same with the reference flux if the boundary condition is exact. We test EPRI-9R benchmark problem with four boundary conditions, such as Dirichlet boundary condition, Neumann boundary condition, homogeneous mixed boundary condition (albedo type), and inhomogeneous mixed boundary condition. We also test reconstruction of the pinwise flux from nodal values, specifically from the AFEN [1, 2] results. From the nodal flux distribution we obtain surface flux and surface current distributions, which can be used to construct various types of boundary conditions. The result show that the Neumann boundary condition cannot be used for iterative schemes because of its ill-conditioning problem and that the other three boundary conditions give similar accuracy. The Dirichlet boundary condition requires the shortest computing time. The inhomogeneous mixed boundary condition requires only slightly longer computing time than the Dirichlet boundary condition, so that it could also be an alternative. In contrast to the fixed-source type problem resulting from the Dirichlet, Neumann, inhomogeneous mixed boundary conditions, the homogeneous mixed boundary condition constitutes an eigenvalue problem and requires longest computing time among the three (Dirichlet, inhomogeneous mixed, homogeneous mixed) boundary condition problems.

  • PDF

A Study on the Application of Analytic Nodal Method to a CANDU-600 Reactor Analysis

  • C.S. Yeom;Ryu, H.;Kim, H.J.;Kim, Y.H.;Kim, Y.B.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.115-120
    • /
    • 2000
  • The analysis of flux distribution under stead-state in large power reactors with assymetry reactivity insertions requires the use of three-dimensional diffusion calculations. For the purpose, consistently formulated modern nodal methods based on higher order interface techniques have become popular tools for flux distributions in large commercial nuclear reactors. Among the earlier developments, the nodal Green's function method obtains its nodal interface equation from the transverse-integrated integral diffusion equation using a finite-medium Green's function. In this method, the outgoing current from a node surface is formulated as a response of the incoming currents and the spatially integrated neutron source within the same node. The well-known nodal expansion method is also based on an interface partial current formulation. Nodal methods high-level interface variables, i.e., interface net current and flux, may be more computationally efficient than the nodal Green's function method because they have one fewer unknown per interface. The Analytic Nodal Method(ANM), which can be classified as an interface net current technique and, was faster in solving some standard benchmark problems than the other two methods.(omitted)

  • PDF

Physics-informed neural network for 1D Saint-Venant Equations

  • Giang V. Nguyen;Xuan-Hien Le;Sungho Jung;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.171-171
    • /
    • 2023
  • This study investigates the capability of Physics-Informed Neural Networks (PINNs) for solving the solution of partial differential equations. Particularly, the 1D Saint-Venant Equations (SVEs) were considered, which describe the movement of water in a domain with shallow depth compared to its horizontal extent, and are widely adopted in hydrodynamics, river, and coastal engineering. The core contribution of this work is to combine the robustness of neural networks with the physical constraints of the SVEs. The PINNs method utilized a neural network to approximate the solutions of SVEs, while also enforcing the underlying physical principles of the equations. This allows for a more effective and reliable solution, especially in areas with complex geometry and varying bathymetry. To validate the robustness of the PINNs method, numerical experiments were conducted on several benchmark problems. The results show that the PINNs could be achieved high accuracy when compared with the solution from the numerical solution. Overall, this study demonstrates the potential of using PINNs and highlights the benefits of integrating neural network and physics information for improved efficiency and accuracy in solving SVEs.

  • PDF

Analysis of bias correction performance of satellite-derived precipitation products by deep learning model

  • Le, Xuan-Hien;Nguyen, Giang V.;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.148-148
    • /
    • 2022
  • Spatiotemporal precipitation data is one of the primary quantities in hydrological as well as climatological studies. Despite the fact that the estimation of these data has made considerable progress owing to advances in remote sensing, the discrepancy between satellite-derived precipitation product (SPP) data and observed data is still remarkable. This study aims to propose an effective deep learning model (DLM) for bias correction of SPPs. In which TRMM (The Tropical Rainfall Measuring Mission), CMORPH (CPC Morphing technique), and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) are three SPPs with a spatial resolution of 0.25o exploited for bias correction, and APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data is used as a benchmark to evaluate the effectiveness of DLM. We selected the Mekong River Basin as a case study area because it is one of the largest watersheds in the world and spans many countries. The adjusted dataset has demonstrated an impressive performance of DLM in bias correction of SPPs in terms of both spatial and temporal evaluation. The findings of this study indicate that DLM can generate reliable estimates for the gridded satellite-based precipitation bias correction.

  • PDF

AE32000B: a Fully Synthesizable 32-Bit Embedded Microprocessor Core

  • Kim, Hyun-Gyu;Jung, Dae-Young;Jung, Hyun-Sup;Choi, Young-Min;Han, Jung-Su;Min, Byung-Gueon;Oh, Hyeong-Cheol
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.337-344
    • /
    • 2003
  • In this paper, we introduce a fully synthesizable 32-bit embedded microprocessor core called the AE32000B. The AE32000B core is based on the extendable instruction set computer architecture, so it has high code density and a low memory access rate. In order to improve the performance of the core, we developed and adopted various design options, including the load extension register instruction (LERI) folding unit, a high performance multiply and accumulate (MAC) unit, various DSP units, and an efficient coprocessor interface. The instructions per cycle count of the Dhrystone 2.1 benchmark for the designed core is about 0.86. We verified the synthesizability and the area and time performances of our design using two CMOS standard cell libraries: a 0.35-${\mu}m$ library and a 0.18-${\mu}m$ library. With the 0.35-${\mu}m$ library, the core can be synthesized with about 47,000 gates and operate at 70 MHz or higher, while it can be synthesized with about 53,000 gates and operate at 120 MHz or higher with the 0.18-${\mu}m$ library.

  • PDF

The development of high fidelity Steam Generator three dimensional thermal hydraulic coupling code: STAF-CT

  • Zhao, Xiaohan;Wang, Mingjun;Wu, Ge;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.763-775
    • /
    • 2021
  • The thermal hydraulic performances of Steam Generator (SG) under both steady and transient operation conditions are of great importance for the safety and economy in nuclear power plants. In this paper, based on our self-developed SG thermal hydraulic analysis code STAF (Steam-generator Thermalhydraulic Analysis code based on Fluent), an improved new version STAF-CT (fully Coupling and Transient) is developed and introduced. Compared with original STAF, the new version code STAF-CT has two main functional improvements including "Transient" and "Fully Three Dimensional Coupling" features. In STAF-CT, a three dimensional energy transferring module is established which can achieve energy exchange computing function at the corresponding position between two sides of SG. The STAF-CT is validated against the international benchmark experiment data and the results show great agreement. Then the U-shaped SG in AP1000 nuclear power plant is modeled and simulated using STAF-CT. The results show that three dimensional flow fields in the primary side make significant effect on the energy source distribution between two sides. The development of code STAF-CT in this paper can provide an effective method for further SG high fidelity research in the nuclear reactor system.

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.