• Title/Summary/Keyword: adulterated sesame oils

Search Result 6, Processing Time 0.024 seconds

Comparative Studies on the Fatty Acid Composition of Korean and Chinese Sesame Oils and Adulterated Sesame Oils with Commercial Edible Oils (국내산 및 중국산 참기름과 변조 참기름의 지방산 조성에 관한 연구)

  • 강치희;박재갑;박정웅;전상수;이승철;하정욱;황용일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.17-20
    • /
    • 2002
  • This study was carried out to determine the composition of fatty acids from the samples such as Korean and Chinese sesame oils and adulterated sesame oils with commercial edible oils including soybean and corn oils collected in Gyeongnam area. The fatty acid composition of sesame oils extracted from commercial Korean and Chinese sesame showed similar pattern except the result that Korean sesame oils contained lower levels of palmitic acid, stearic acid and higher level of linolenic acid than Chinese sesame oils. In adulterated sesame oils with commercial soybean oil, the composition of linolenic acid was increased 0.73$\pm$0.05%, 1.25$\pm$0.04% by adding of commercial soybean oil, 3%, 9%, respectively. And that of the linoleic acid was 50.22$\pm$0.06%, 51.14$\pm$0.05% by 5%, 9% addition of commercial corn oil, respectively. From these results, sesame oils and adulterated sesame oils with commercial edible oils will be verified by the composition analysis of fatty acids.

Studies on Quality Evaluation of Current Sesame Oils Sold in Markets (시중 유통참기름의 품질평가에 관한 연구)

  • 박재홍;김순천;조성완;김은선;최경철;김영국;임태곤
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.1
    • /
    • pp.57-66
    • /
    • 1991
  • In the present study, an attempt was made to use FV (Fatty acid ratio & Villavecchia reaction) value determination as a reliable method for the detection and analysis of the adulteration of sesame oils. FV value was defined as fatty acid ratio, C18 : I + C18 : 2/C16 : ${\times}C18$ : 3, times modified Villavecchia-Suarez test value. Seventy-four sesame oils collected from markets were evaluated using this method. Only II among 74 collected sesame oils were found to be pure sesame oil by FV value determination. In 63 adulterated sesame oils, it was revealed 23 samples were adulterated soybean oil, to with rice bran oil, 10 with sesame dregs extract oil, 8 with perilla seed oil, 7 with corn oil, 3 with cotton seed oil, and 2 with rape seed oil.

  • PDF

Determination of Sesame oil Adulterated with other Vegetable oils by Spectrophotometric Method (자외선 흡수특성을 이용한 참기름의 이종기름 혼입판별에 관하여)

  • 이영근
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.3
    • /
    • pp.151-155
    • /
    • 1993
  • Since there have been no method which can applicable to the screening of commercial sesame oil adulterated with other vegetable oils, the present investigation was carried out particularily focusing on the the pattern of IN absorption of sesame oil and other vegetable oils. For this, a variety of oil samples prepared by the conventional method from sesame seeds, perilla seeds, com, soybean, and rice bran were analyzed by IN spectrophotometer. IN spectra of sesame oil and oil of unheated sesame seeds showed absorption peaks at 215, 230 and 290 nm. While UV spectra of com oil, perilla oil and soybean oil all showed absorption peaks at 215, 230 and 280 nm, that of rice bran oill showed peaks at 215, 290 320 nm. When sesame oil was mixed with com oil, perilla oil or soybean oil, respectively, from which the absorbance of peaks at 290 nm were lower than pure sesame oil. The peak at 320 nm which was typical absorption peak of rice bran oil was still observed in the spectnun of mixture of sesame oil with rice bran oil.

  • PDF

Detection of the Adulterated Sesame Oil by the Analysis of Fatty Acid Compositions and Carbon Isotope Ratio (지방산조성과 탄소동위원소 분석에 의한 참기름에 혼입된 타식용유의 검출방법)

  • Ha, Jae-Ho;Hawer, Woo-Derck;Hwang, Jin-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.345-350
    • /
    • 1993
  • Fatty acid composition of sesame oil could be distinguished from that of rapeseed oil and soybean oil by the content of linolenic acid. The relative composition of each fatty acid revealed the clear difference between sesame oil and other vegetable oils except corn oil. Ricebran oil was different from sesame oil in the relative composition of palmitic acid with respect to stearic acid and cottonseed oil in oleic acid to linoleic acid. ${\delta}^{13}C$ of corn oil was $19.40%_{\circ}$, in oleic acid and $-17.11%_{\circ}$, in linoleic acid, while that of sesame oil was $-27.60%_{\circ}$ in oleic acid and $-27.70%_{\circ}$ in linoleic acid. Therefore, most adulterant could be detected by comparing the ratio of fatty acids in vegetable oils except corn oil. It could, however, be detected by comparing carbon isotope ratio in the case of corn oil.

  • PDF

A Survey on Adulteration and Safety of Sesame oil Circulated in Gwangju (광주지역에서 유통되고 있는 참기름의 진위판별 및 안전성 조사)

  • Yang, Yong-Shik;Kim, Jong-Pil;Seo, Kye-Won;Cho, Bae-Sick;Gang, Gyung-Lee;Kim, Eun-Sun;Park, Jong-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.212-217
    • /
    • 2008
  • This survey was conducted to monitor the adulteration of sesame oil circulated in Gwangju, 2007. A total of 60 samples was tested by analysis of fatty acid composition. Of these samples, 22 were from large-scale manufacturer, 25 were from small-scale manufacturer and 13 from Bangagan. First of all, in goods manufactured by large-scale company, there are no sesame oils where linolenic acid($C_{18:3}$) exceed regulatory guidance(0.5%). 5 samples from small-scale manufacturer contained linolenic acid from 0.90% to 8.38%, which means that they have other cooking oil, such as com oil, soybean oil and rape seed oil. Among Bangagan goods, only one sample have 1.20% of linolenic acid. On the other hand erucic acid($C_{22:1}$) was not detected in 60 samples at all, which means that they were not adulterated with rape seed oil. And among 6 samples of exceeding 0.5% of linolenic acid and 12 samples from Bangagan, 13 of them had benzo(a)pyrene from $0.2{\mu}g/kg\;to\;0.7{\mu}g/kg$ and the other 5 samples did not.

Evaluation of benzene residue in edible oils using Fourier transform infrared (FTIR) spectroscopy

  • Joshi, Ritu;Cho, Byoung-Kwan;Lohumi, Santosh;Joshi, Rahul;Lee, Jayoung;Lee, Hoonsoo;Mo, Changyeun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.257-271
    • /
    • 2019
  • The use of food grade hexane (FGH) for edible oil extraction is responsible for the presence of benzene in the crude oil. Benzene is a Group 1 carcinogen and could pose a serious threat to the health of consumer. However, its detection still depends on classical methods using chromatography which requires a rapid non-destructive detection method. Hence, the aim of this study was to investigate the feasibility of using Fourier transform infrared (FTIR) spectroscopy combined with multivariate analysis to detect and quantify the benzene residue in edible oil (sesame and cottonseed oil). Oil samples were adulterated with varying quantities of benzene, and their FTIR spectra were acquired with an attenuated total reflectance (ATR) method. Optimal variables for a partial least-squares regression (PLSR) model were selected using the variable importance in projection (VIP) and the selectivity ratio (SR) methods. The developed PLS models with whole variables and the VIP- and SR-selected variables were validated against an independent data set which resulted in $R^2$ values of 0.95, 0.96, and 0.95 and standard error of prediction (SEP) values of 38.5, 33.7, and 41.7 mg/L, respectively. The proposed technique of FTIR combined with multivariate analysis and variable selection methods can detect benzene residuals in edible oils with the advantages of being fast and simple and thus, can replace the conventional methods used for the same purpose.