• Title/Summary/Keyword: adsorption kinetics

Search Result 384, Processing Time 0.029 seconds

Optimization of methylene blue adsorption by pumice powder

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • The main objective of this study is to evaluate adsorptive removal of Methylene Blue (MB) dye from aqueous solution using pumice powder. The effects of pH, adsorption time, agitation speed, adsorbent dose, and dye concentrations on dye adsorption were investigated. Process kinetics and isotherm model constants were determined accordingly. The results showed that adsorbent dose, dye concentration and agitation speed are the important parameters on dye adsorption and the removal of MB did not significantly change by varying pH. A total adsorption process time of 60 min was observed to be sufficient to effectively remove 50 mg/L MB concentration. The MB adsorption data obeyed both pseudo first order and second order kinetic models. Adsorption of MB by pumice fitted well both Langmiur and Freundlich isotherms ($R^2{\geq}0.9700$), except for 150 rpm agitation speed that system fitted only Langmiur isotherm. The results of this study emphasize that pumice powder can be used as a low cost and effective adsorbent for dye removal.

Adsorption Kinetics of metals (Cu, Cd, Pb) in Tidal Flat Sediments and Yellow Loesses (갯벌과 황토에 의한 중금속 (Cu, Cd, Pb)의 흡착 kinetics)

  • YOU Sun-Jae;KIM Jong-Gu;KIM Jong-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.250-256
    • /
    • 2000
  • The purpose of this study was to investigate the adsorption kinetics of heavy metals (Cu, Cd and Pb) using three tidal flat sediments and two yellow loesses. The relationship between adsorption rate calculated by non-linear regression model and chemical parameters was estimated. The contents of ignitiot loss (I.L.) am Fe, Mn and Al oxides of yellow loess were higher $1.5{\~}6 times$ than those of tidal flat sediments. But the contents of silt and clay of tidal flat sediment in Eueunri was higher than others. Heavy metals adsorption were occured rapidly in the intial 30 min and the concentration of adsorbed heavy metals were $4.1{\~}14.7\;{\mu}g/g\;for\;Cu,\;2.8{\~}16.7\;{\mu}g/g\;for\;Cd\;and\;43.4{\~}101.7\;{\mu}g/g$ for Pb, showing a high cumulative adsorption of $8{\~}70{\%}\;for\;Cu,\;18{\~}31{\%}\;for\;Cd and\;19{\~}52{\%}$ for Pb after 3hr. In initial concentration of $0.5{\times}10^(-5)M$, adsorption rate of heavy metals by the tidal flat sediments and yellow loesses was the sequence Pb>Cu^gt;Cd. The adsorption kinetics of Cu, Cd and Pb was found to be one-site kinetic model. Especially, in the case of Cu, there was a high negative ($R^2= -0.88{\~}-0.99$) linear correlation between chemical parameter such as I.L., Al oxide, silt and clay, and adsorption rate coefficients ($K_a$) calculated by non-linear model.

  • PDF

Synthesis and Phosphorus Adsorption Characteristics of Zirconium Magnetic Adsorbent Having Magnetic Separation Capability (자기분리가 가능한 지르코늄 자성 흡착제의 합성과 인 흡착 특성)

  • Lim, Dae-Seok;Kim, Yeon-Hyung;Kim, Dong-Rak;Lee, Tae-Gu;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.431-442
    • /
    • 2012
  • The purpose of this study, is to separate magnetic separation devices using permanent magnets by using magnetization characteristics remaining in treated water after adsorption and synthesizing phosphorus adsorbent capable of magnetic separation for efficient removal of phosphorus. The synthesis of the adsorbent which set Zirconium(Zr) having high friendly features for phosphorus as an element, and by synthesizing Iron Oxide($Fe_3O_4$, another name of $Fe_3O_4$ is magnetite) being able to grant magnetism to Zirconium Sulfate($Zr(SO_4)_2$), zirconium magnetic adsorbent(ZM) were manufactured. In order to consider the phosphorus adsorption characteristics of adsorbent ZM, batch adsorption experiment was performed, and based on the results, pH effect, adsorption isotherm, adsorption kinetics, and magnetic separation have been explore. As the experiment result, adsorbent ZM showed a tendency that the adsorption number was decreased rapidly at pH 13; however, it was showed a high amount of phosphorus removal in other range and it showed the highest amount of phosphorus removal in pH 6 of neutral range. In addtion, the Langmuir adsorption isotherm model is matched well, and D-R adsorption isotherm model is ranged 14.43kJ/mol indicating ion exchange mechanism. The result shown adsorption kinetics match well to the Pseudo-second-order kinetic model. The adsorbent ZM's capablility of regenerating NaOH and $H_2SO_4$, was high selectivity on the phosphorus without impacts on the other anions. The results of applying the treated water after adsorption of phosphorus to the magnetic separation device by using permanent magnets, shows that capture of the adsorbent by the magnetization filter was perfect. And they show the possibility of utilization on the phosphorus removal in water.

Adsorption Characteristics of As(V) onto Cationic Surfactant-Modified Activated Carbon

  • Choi, Hyun-Doc;Park, Sung-Woo;Ryu, Byung-Gon;Cho, Jung-Min;Kim, Kyung-Jo;Baek, Ki-Tae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.153-157
    • /
    • 2009
  • Arsenic at abandoned mine sites has adversely affected human health in Korea. In this study, the feasibility of using cationic surfactant-modified activated carbon (MAC) to remove As(V) was evaluated in terms of adsorption kinetics, adsorption isotherms, and column experiments. The adsorption of As(V) onto MAC was satisfactorily simulated by the pseudo-second-order kinetics model and Langmuir isotherm model. In column experiments, the breakthrough point of AC was 28 bed volumes (BV), while that of MAC increased to 300 BV. The modification of AC using cationic surfactant increased the sorption rate and sorption capacity with regard to As(V). As a result, MAC is a promising adsorbent for treating As(V) in aqueous streams.

QCM Study of β-Casein Adsorption on the Hydrophobic Surface: Effect of Ionic Strength and Cations

  • Lee, Myung-Hee;Park, Su-Kyung;Chung, Chin-Kap;Kim, Hack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1031-1035
    • /
    • 2004
  • The adsorption kinetics of ${\beta}$-casein on a hydrophobic surface has been studied by means of the quartz crystal microbalance (QCM). The self assembled monolayer of 1-octadecanethiol on a gold coated quartz crystal was used as a hydrophobic surface for adsorption. The adsorption kinetics was monitored in different solution conditions. Formation of monolayer is observed in most cases. At high concentration of protein, micelle formation which is interrupted by high ionic strength of solution is observed. Casein binding cations such as $Ca^{2+},\;Ba^{2+}\;and\;Al^{3+}$ increase the hydrophobicity of the protein and the multiple layer adsorption occurs. The strong and weak points of the QCM method in the study of protein adsorption are discussed.

Equilibrium modeling for adsorption of NO3- from aqueous solution on activated carbon produced from pomegranate peel

  • Rouabeh, I.;Amrani, M.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.143-151
    • /
    • 2012
  • Nitrate removal from aqueous solution was investigated using $ZnCl_2$ and phosphoric acid activated carbon developed from pomegranate peel with particle size 0.4 mm. Potassium nitrate solution was used in batch adsorption experiments for nitrate removal from water. The effects of activated carbon dosage, time of contact, and pH were studied. The equilibrium time was fond to be 45 min. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir fit the isotherm with the theoretical adsorption capacity ($q_t$) was fond 78.125 mg g-1. Adsorption kinetics data were modeled using the pseudo-first, pseudo-second order, and intraparticle diffusion models. The results indicate that the second-order model best describes adsorption kinetic data. Results show activated carbon produced from pomegranate is effective for removal of nitrate from aqueous solution.

Equilibrium Kinetics and Thermodynamic Parameters Studies for Eosin Yellow Adsorption by Activated Carbon (활성탄에 의한 Eosin Yellow의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3319-3326
    • /
    • 2014
  • Eosin yellow is used a dye and colorant but it is harmful toxic substance. In this paper, batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for eosin yellow adsorption by activated carbon with varying the operating variables like pH, initial concentration, contact time. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. By estimated Langmuir constant value, $R_L$=0.067-0.083, and Freundlich constant value, $\frac{1}{n}=0.237-0.267$, this process could be employed as effective treatment for removal of eosin yellow. From calculated Temkin constant, value, B=1.868-2.855 J/mol, and Dubinin-Radushkevich constant, value, E=5.345-5.735 kJ/mol, this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with good correlation coefficient($r^2$=0.995-0.998). The mechanism of the adsorption process was determined two step like as boundary and intraparticle diffusion.

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs) (염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구)

  • An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.

The Removal of Hexavalent Chromium from Aqueous Solutions Using Modified Holly Sawdust: Equilibrium and Kinetics Studies

  • Siboni, M. Shirzad;Samarghandi, M.R.;Azizian, S.;Kim, W.G.;Lee, S.M.
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • The removal of hexavalent chromium from aqueous solutions onto modified holly sawdust was studied at varying initial hexavalent chromium concentrations, adsorbent doses, pHs and contact times. The removal of hexavalent chromium from aqueous solutions increased with increasing adsorbent dosage and contact time. The percentage of hexavalent chromium removed from the aqueous solutions decreased with increasing hexavalent chromium concentration and pH of the solution. The kinetics of the adsorption of hexavalent chromium onto modified holly sawdust was analyzed using pseudo first-order and pseudo second-order models. The pseudo second-order model described the kinetics of adsorption of hexavalent chromium. The Langmuir and Freundlich isotherm models were used for modeling of the adsorption equilibrium data. The Langmuir isotherm model well described the equilibrium data for the removal of hexavalent chromium by modified holly sawdust. The obtained maximum adsorption capacity was 18.86 mg/g at pH 7. The results showed that modified holly sawdust can be used as a low cost adsorbent for the treatment of aqueous solutions containing chromium.

Kinetics and Thermodynamic Properties Related to the Adsorption of Copper and Zinc onto Zeolite Synthesized from Coal Fly Ash

  • Lee, Chang-Han;Ambrosia, Matthew Stanley
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1327-1335
    • /
    • 2013
  • Na-A zeolite (Z-Cl) was synthesized from coal fly ash, which is a byproduct of coal combustion for the generation of electricity. The adsorption of $Cu^{2+}$ and $Zn^{2+}ions$ onto Z-C1 was investigated via batch tests over a range of temperatures (303.15 to 323.15 K). The resultant experimental equilibrium data were compared to theoretical values calculated using model equations. With these results, the kinetics and equilibrium parameters of adsorption were calculated using Lagergren and Langmuir-Freundlich models. The adsorption kinetics revealed that the pseudo second-order kinetic mechanism is predominant. The maximum adsorption capacity ($q_{max}$) values were 139.0-197.9 mg $Zn^{2+}$/g and 75.0-105.1 mg $Cu^{2+}/g$. Calculation of the thermodynamic properties revealed that the absorption reactions for both $Cu^{2+}$ and $Zn^{2+}$ were spontaneous and endothermic. Collectively, these results suggest that the synthesized zeolite, Z-C1, can potentially be used as an adsorbent for metal ion recovery during the treatment of industrial wastewater at high temperatures.