• Title/Summary/Keyword: adjustable parameter

Search Result 66, Processing Time 0.027 seconds

Impact of Duty Cycle in Wireless Sensor Networks (무선 센서 네트워크에서 Duty Cycle의 영향)

  • Sthapit, Pranesh;Pyun, Jae-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.854-857
    • /
    • 2008
  • Wireless sensor consists of an internal power source which has limited life time. Several MAC protocols have exploited scheduled sleep/listen cycles to conserve energy in sensor networks. Duty cycle is a user-adjustable parameter in low duty cycle MAC protocols, which determines the length of the sleep period in a frame. The sire of duty cycle has direct effect on the Performance of MAC Protocols. In this Paper, we simulated TEEM (A Traffic Aware, Energy Efficient MAC) and S-MAC in NS-2 with different duty cycle values and analyze how duty-cycle effects on the performance and energy consumption of both the protocols.

  • PDF

Visual Fatigue Reduction Based on Depth Adjustment for DIBR System

  • Liu, Ran;Tan, Yingchun;Tian, Fengchun;Xie, Hui;Tai, Guoqin;Tan, Weimin;Liu, Junling;Xu, Xiaoyan;Kadri, Chaibou;Abakah, Naana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1171-1187
    • /
    • 2012
  • A depth adjustment method for visual fatigue reduction for depth-image-based rendering (DIBR) system is proposed. One important aspect of the method is that no calibration parameters are needed for adjustment. By analyzing 3D image warping, the perceived depth is expressed as a function of three adjustable parameters: virtual view number, scale factor and depth value of zero parallax setting (ZPS) plane. Adjusting these three parameters according to the proposed parameter modification algorithm when performing 3D image warping can effectively change the perceived depth of stereo pairs generated in DIBR system. As the depth adjustment is performed in simple 3D image warping equations, the proposed method is facilitative for hardware implementation. Experimental results show that the proposed depth adjustment method provides an improvement in visual comfort of stereo pairs as well as generating comfortable stereoscopic images with different perceived depths that people desire.

A Study on the Adaptive Fuzzy Control of an Inverted Pendulum (적응 퍼지 제어기를 이용한 도립진자의 제어)

  • Lee, Dong-Bin;Ko, Jae-Ho;Ryu, Chang-Wan;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.687-689
    • /
    • 1998
  • This paper represents fundamental developments in Fuzzy and Neural approaches. The Fuzzy Controller(FC) and plant are cascaded in Adaptive framework. Each of which produces its outputs. The adjustable parameters all pertain to the fuzzy controller is implemented as an Adaptive FC to adjust the environments of the plant. There is an error meaure block which is a difference between the actual state and desired state. We introduce error back propagation algorithm in neural method. To speed up convergence, we follow a steepest decent in the sense that each parameter set update leads to a smaller error measure and is learned by this methodology. Inverted pendulum is a typical testbed to measure the effectiveness of nonlinear control system. finally we simulated the adaptive fuzzy controller to be able to bring back to the upright position of the its angle and angular velocity.

  • PDF

Nucleation and growth of vacancy agglomeration in CZ silicon crystals

  • Ogawa, Tomoya;Ma, Minya
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.286-288
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction $X_{B}$, the degree for supersaturation $\sigma$ is given by $[X_{B}-X_{BS}]/X_{BS}=X_{B}/X_{BS}-1=ln(X_{B}/X_{BS})$ because $X_{B}/X_{BS}$ is nearly equal to unity. Here, $X_{BS}$ is the saturated concentration of vacancies in a silicon crystal and $X_{B}$ is a little larger than $X_{BS}$. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}_{B}={\mu}^{0}+RT$ ln $X_{B}+RT$ ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}^{0}$ is an ideal chemical potential of the vacancies and ${\gamma}$ is and adjustable parameter similar to the activity of solute in a solute in a solution. Thus, ${\sigma}(T)$ is equal to $({\mu}_{B}-{\mu}_{BS})/RT$. Driving force of nucleation for the vacancy agglomeration will be proportional to the chemical potentialdifference $({\mu}_{B}-{\mu}_{BS})/RT$ or ${\sigma}(T)$, while growth of the vacancy agglomeration is proportaional to diffusion of the vacancies and grad ${\mu}_{B}$.

  • PDF

Design of Self-Adapted Controller for Unstable System in Variable Environment (가변환경하의 불안정 시스템에 대한 자율적응 제어기 설계)

  • Kim Sung-Hoe
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.57-64
    • /
    • 2002
  • The system that is thermal test system for elements has been controlled generally by PID algorithm because of its characteristic. There is not a mathematical model for the system. So the system that is use the PID controller is not properly operated. To solve this problem, we propose a fuzzy algorithm that parameters and rule base is selected by self-searched algorithm for each system. The input fuzzy membership function is adapted based on the set stable range. Output membership function is nearly fixed but some parameter is adjustable. The rule base is changed under basis on the system response. The output value computed through inference and defuzzification is mapped into a value that is proper for the system operation. Through this regulation, it will be possible to prevent the temperature of system to go into the unstable temperature.

  • PDF

Design of a Low-Order Sensorless Controller by Robust H∞ Control for Boost Converters

  • Li, Xutao;Chen, Minjie;Shinohara, Hirofumi;Yoshihara, Tsutomu
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1025-1035
    • /
    • 2016
  • Luenberger observer (LO)-based sensorless multi-loop control of a converter requires an iterative trial-and-error design process, considering that many parameters should be determined, and loop gains are indirectly related to the closed-loop characteristics. Robust H∞ control adopts a compact sensorless controller. The algebraic Riccati equation (ARE)-based and linear matrix inequality (LMI)-based H∞ approaches need an exhaustive procedure, particularly for a low-order controller. Therefore, in this study, a novel robust H∞ synthesis approach is proposed to design a low-order sensorless controller for boost converters, which need not solve any ARE or LMI, and to parameterize the controller by an adjustable parameter behaving like a "knob" on the closed-loop characteristics. Simulation results show the straightforward closed-loop characteristics evaluation and better dynamic performance by the proposed H∞ approach, compared with the LO-based sensorless multi-loop control. Practical experiments on a digital processor confirmed the simulation results.

Viscosity of Helium Calculated by Using the Brake Theory of Viscosity (Brake 점성 이론으로 계산한 헬륨의 점성도)

  • Won-Soo Kim;Jin-Young Kim;Tong-Seek Chair
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.376-382
    • /
    • 1992
  • Liquid helium is an exciting subject for the study of thermodynamic and transport properties because of its remarkable properties. The viscosity of liquid helium exhibits the abnormal behavior compared to other ordinary liquid. Below the $\lambda$ point liquid $^4He$ becomes superfluid, and it is obviously quite a different phenomenon from the change of liquid $^3He$. The brake theory of viscosity proposed by authors is successfully applied to liquid $^3He$, liquid $^4He$, dense gas and 4He with adjustable parameter $V_s$. The calculation results are satisfactory compared with the observed values.

  • PDF

Predictive modeling of concrete compressive strength based on cement strength class

  • Papadakis, V.G.;Demis, S.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.587-602
    • /
    • 2013
  • In the current study, a method for concrete compressive strength prediction (based on cement strength class), incorporated in a software package developed by the authors for the estimation of concrete service life under harmful environments, is presented and validated. Prediction of concrete compressive strength, prior to real experimentation, can be a very useful tool for a first mix screening. Given the fact that lower limitations in strength have been set in standards, to attain a minimum of service life, a strength approach is a necessity. Furthermore, considering the number of theoretical attempts on strength predictions so far, it can be seen that although they lack widespread accepted validity, certain empirical expressions are still widely used. The method elaborated in this study, it offers a simple and accurate, compressive strength estimation, in very good agreement with experimental results. A modified version of the Feret's formula is used, since it contains only one adjustable parameter, predicted by knowing the cement strength class. The approach presented in this study can be applied on any cement type, including active additions (fly ash, silica fume) and age.

Model Reference Adaptive Control for Multivariable Systems (다변수 시스템에 대한 기준 모델형 적응 제어)

  • Hai-Won Yang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.11
    • /
    • pp.394-403
    • /
    • 1983
  • This paper discusses a model reference adaptive control for a multi-input multi-output continuos system in matrix fraction description. The controller is of Monopoli-Narendra type with a time-varying gain matrix in the parameter adaptation law. The transfer matrix of the given plant with an adjustable controller is made to approach to that of the reference model asymptotically. It is shown that, under some plausible assumptions such as on the knowlidge of an interactor matrix, the algorithm for a single-input single-output system can be appropriately extended to a multi-input multi-output system. The convergence of an adaptation law is estavlished with some stability theory and stability of the overall system is asserted by an analytical investigation.

  • PDF

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.