• 제목/요약/키워드: adjacent structures

검색결과 724건 처리시간 0.021초

Optimum tuned mass damper approaches for adjacent structures

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1071-1091
    • /
    • 2014
  • Pounding of adjacent structures are always a notable reason for damages after strong ground motions, but it is already unforeseen detail in newly constructed structures. Thus, several approaches have been proposed in order to prevent the pounding of structures. By using optimally tuned mass dampers, it is possible to decrease the displacement vibrations of structures. But in adjacent structures, the response of both structures must be considered in the objective function of optimization process. In this paper, two different designs of Tuned Mass Dampers (TMD) are investigated. The first design covers independent TMDs on both structures. In the second design, adjacent structures are coupled by a TMD on the top of the structures. Optimum TMD parameters are found by using the developed optimization methodology employing harmony search algorithm. The proposed method is presented with single degree of freedom and multiple degree of freedom structures. Results show that the coupled design is not effective on multiple degree of freedom adjacent structures. The coupled design is only effective for rigid structures with a single degree of freedom while the use of independent TMDs are effective on both rigid and flexural structures.

점성 감쇠기를 이용한 인접 비대칭 강성 구조물의 내진보강 최적설계 (Optimal Seismic Reinforcement Design of Adjacent Asymmetric-Stiffness Structures with Viscous Dampers)

  • 성은희
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.60-70
    • /
    • 2022
  • This paper proposes an optimal design method of a seismic reinforcement system for the seismic performance of adjacent asymmetric-stiffness structures with viscous dampers. The first method considers plan asymmetry for efficient seismic reinforcement, and evaluates the seismic performance of optimal design applied to two cases of modeling: adjacent stiffness-asymmetric structures and adjacent stiffness-symmetric structures. The second method considers the response of asymmetric structures to derive the optimal objective function, and evaluates seismic efficiency of the objective function applied to two cases of responses: horizontal displacement and torsion. Numerical analyses are conducted on 7- and 10-story structures with a uni-asymmetric-stiffness plan using six cases of historic earthquakes, normalized to 0.4g. The results indicate that the seismic performance is excellent as modeled by adjacent asymmetric-stiffness structures and how much horizontal displacement is applied as the objective function.

발파에 의한 터널 굴착시 RMR값에 따른 인접구조물의 동적 영향 (Dynamic Influence of Tunnel Blasting on Adjacent Structures for Various RMR Values)

  • 허재록;황의석;이봉열;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.657-664
    • /
    • 2002
  • This study presents the influence of blasting-induced vibration on the adjacent structures in rocks of various RMR values. 3D finite element analysis was performed to simulate the behaviour of tunnel and adjacent structures during rock excavation. The blast loadings were evaluated from the blasting pressure which is depending on the type and amount of explosive charges. Influencing factors for the stability of adjacent structures and ground conditions were reviewed in terms of structural dimensions and RMR values. The stiffness and load of adjacent structures are modeled in the numerical analysis to Investigate blasting effects of the size of adjacent structures. The vibration velocity and maximum particle velocity was increase sharply when the RMR value changed from 30 to 50. The effect of particle velocity was minimized at the width of structure become 2 times of tunnel diameter.

  • PDF

동일한 인접구조물의 효율적 진동제어방안 (Efficient Vibration Control Approach of Two Identical Adjacent Structures)

  • 옥승용
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.56-63
    • /
    • 2014
  • This study proposes a new control approach for efficient vibration suppression of two identical adjacent structures. The conventional control approach of two adjacent structures is to interconnect the two structures with passive, semi-active or active control devices. However, when the two adjacent structures are identical to each other, their dynamical behaviors such as frequency and damping properties are also the same. In this case, the interconnected control devices cannot exhibit the dissipative control forces on the both structures as expected since the relative displacements and velocities of the devices become close to zero. In other words, the interconnection method does not work for the twin structures as enough as expected. In order to solve this problem, we propose several new control approaches to effectively and efficiently reduce the identically-fluctuating responses of the adjacent structures with minimum control efforts. In order to demonstrate the proposed control systems, the proposed several control systems are optimally designed and their control performances are compared with that of the conventional optimal control system where each TMD(tuned mass damper) is installed in each structure for independent control purpose. The simulated results show that one of the proposed control systems(System 04) is able to guarantee enhanced control performance compared with the conventional system.

인접건축물의 진동제어를 위한 MR감쇠기의 적용 (Application of MR damper for Vibration Control of Adjacent Buildings)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.99-108
    • /
    • 2012
  • In recently, sky-bridge are often applied to high-rised adjacent buildings for pedestrian bridge. the seisnic response control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. In this study, vibration control effect of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Two typed of control methods, displacement based or velocity based, are applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement-based control algorithm is more effective than velocity-based control algorithm for seismic response control of adjacent buildings. And, when displacement-based control method is applied to control of adjacent buildings, the control of building occurred large displacement is more efficient in reducing the seismic response.

A probabilistic seismic demand model for required separation distance of adjacent structures

  • Rahimi, Sepideh;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.147-155
    • /
    • 2022
  • Regarding the importance of seismic pounding, the available standards and guidelines specify minimum separation distance between adjacent buildings. However, the rules in this field are generally based on some simple assumptions, and the level of confidence is uncertain. This is attributed to the fact that the relative response of adjacent structures is strongly dependent on the frequency content of the applied records and the Eigen frequencies of the adjacent structures as well. Therefore, this research aims at investigating the separation distance of the buildings through a probabilistic-based algorithm. In order to empower the algorithm, the record-to-record uncertainties, are considered by probabilistic approaches; besides, a wide extent of material nonlinear behaviors can be introduced into the structural model by the implementation of the hysteresis Bouc-Wen model. The algorithm is then simplified by the application of the linearization concept and using the response acceleration spectrum. By implementing the proposed algorithm, the separation distance in a specific probability level can be evaluated without the essential need of performing time-consuming dynamic analyses. Accuracy of the proposed method is evaluated using nonlinear dynamic analyses of adjacent structures.

터널 굴착에 따른 지반 및 인접구조물의 3차원 거동 (3-D Behavior of Adjacent Structures in Tunnelling Induced Ground Movements)

  • 김찬국;황의석;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.663-670
    • /
    • 2003
  • Urban tunnelling need to consider not only the stability of tunnel itself but also the ground movement regarding adjacent structures. This paper present 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.

  • PDF

GIS기반을 이응한 도심지 터널굴착에 따른 인접 구조물 손상평가 시스템 개발 (Development of GIS Based Risk Assessment System for Adjacent Structures Due to Tunnelling-Induced Ground Movements in Urban)

  • 윤효석;박용원;오영석;김제규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.493-500
    • /
    • 2001
  • The construction of bored tunnels in soft ground inevitably causes ground movements. In the urban environment these may be of particular significance, because of their influence on buildings, other tunnels and services. The prediction of ground movements and the assessment of the potential effects on the structures is therefore an essential aspect of planning, design and construction of a tunnelling project in the urban environment. In this study, to minimize the effect of tunnelling-Induced ground movements on the adjacent structures, a system for tile settlement risk management was developed. The GIS based risk assessment system for adjacent structures developed in this study consists of several modules such as building information module, settlement evaluation module, potential risk assessment module for adjacent structures, and analysis module for monitoring data. This system focuses on controlling and managing construction processes that may lead to settlement In the surrounding buildings and can contribute to producing the optimum technical and economic design.

  • PDF

공유형 동조질량감쇠기를 이용한 인접건물의 지진응답제어 (Seismic Response Control of Adjacent Buildings Using Shared Tuned Mass Damper)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제14권3호
    • /
    • pp.75-84
    • /
    • 2014
  • When adjacent tall buildings experience earthquake excitation, structural pounding may happen. In order to mitigate seismic pounding damage to adjacent structures, many studies have been done to date. Tuned mass dampers (TMD) are widely used for reduction of dynamic responses of building structures subjected to earthquake excitations. If a TMD is shared between adjacent buildings and it shows good control performance, it will be effective and economic means to reduce seismic responses of adjacent structures. In this study, control performance of a shared tuned mass damper (STMD) for seismic response reduction of adjacent buildings has been evaluated. For this purpose, two 8-story example buildings were used and multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the STMD. Based on numerical analyses, it has been shown that a STMD can effectively control dynamic responses and reduce the effect of pounding between adjacent buildings subjected to earthquake excitations in comparison with a traditional TMD.

Optimum design of viscous dampers to prevent pounding of adjacent structures

  • Karabork, Turan;Aydin, Ersin
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.437-453
    • /
    • 2019
  • This study investigates a new optimal placement method for viscous dampers between structures in order to prevent pounding of adjacent structures with different dynamic characteristics under earthquake effects. A relative displacement spectrum is developed in two single degree of freedom system to reveal the critical period ratios for the most risky scenario of collision using El Centro earthquake record (NS). Three different types of viscous damper design, which are classical, stair and X-diagonal model, are considered to prevent pounding on two adjacent building models. The objective function is minimized under the upper and lower limits of the damping coefficient of the damper and a target modal damping ratio. A new algorithm including time history analyses and numerical optimization methods is proposed to find the optimal dampers placement. The proposed design method is tested on two 12-storey adjacent building models. The effects of the type of damper placement on structural models, the critical period ratios of adjacent structures, the permissible relative displacement limit, the mode behavior and the upper limit of damper are investigated in detail. The results of the analyzes show that the proposed method can be used as an effective means of finding the optimum amount and location of the dampers and eliminating the risk of pounding.