• Title/Summary/Keyword: adipose-derived stem cell

Search Result 113, Processing Time 0.038 seconds

Stem Cells in Plastic Surgery: A Review of Current Clinical and Translational Applications

  • Salibian, Ara A.;Widgerow, Alan D.;Abrouk, Michael;Evans, Gregory R.D.
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.666-675
    • /
    • 2013
  • Background Stem cells are a unique cell population characterized by self-renewal and cellular differentiation capabilities. These characteristics, among other traits, make them an attractive option for regenerative treatments of tissues defects and for aesthetic procedures in plastic surgery. As research regarding the isolation, culture and behavior of stem cells has progressed, stem cells, particularly adult stem cells, have shown promising results in both translational and clinical applications. Methods The purpose of this review is to evaluate the applications of stem cells in the plastic surgery literature, with particular focus on the advances and limitations of current stem cell therapies. Different key areas amenable to stem cell therapy are addressed in the literature review; these include regeneration of soft tissue, bone, cartilage, and peripheral nerves, as well as wound healing and skin aging. Results The reviewed studies demonstrate promising results, with favorable outcomes and minimal complications in the cited cases. In particular, adipose tissue derived stem cell (ADSC) transplants appear to provide effective treatment options for bony and soft tissue defects, and non-healing wounds. ADSCs have also been shown to be useful in aesthetic surgery. Conclusions Further studies involving both the basic and clinical science aspects of stem cell therapies are warranted. In particular, the mechanism of action of stem cells, their interactions with the surrounding microenvironment and their long-term fate require further elucidation. Larger randomized trials are also necessary to demonstrate the continued safety of transplanted stem cells as well as the efficacy of cellular therapies in comparison to the current standards of care.

Anti-inflammatory Effect of Conditioned Medium From an Immortalized Adipose-derived Stem Cell Line by SV40 T Antigen (SV40의 T항원으로 불사화한 지방줄기세포주로부터 생산한 배양액의 항염증 효능)

  • Ye Jin Lee;So Yeong Lee;Min Gyeong Jeong;Seong Moon Park;Dong Wan Kim
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.170-178
    • /
    • 2024
  • Adipose-derived stem cells (ADSCs) are capable of differentiation into multiple lineages of cells, which has attracted attention for clinical therapy. However, ADSCs have poor proliferation capacity and a short life span in culture, which is an impediment in the application to clinical use. Previously, to overcome growth disadvantages, we had established an immortalized ADSC line (ADSC-T) by introducing the SV40 T antigen coding gene into primary human ADSC. In the present study, we evaluated the differentiation potential of this cell line and assessed the anti-inflammatory effect of its conditioned medium (CM). ADSC-T appeared to maintain the differentiation potential into adipocyte and chondrocyte. The CM of ADSC-T suppressed the NF-κB activity and its target gene expression of COX-2 and iNOS. Furthermore, the phosphorylations of MAPKs, including ERK, JNK and p38, were suppressed by the ADSC-T CM. The expressions of pro-inflammatory cytokines such as TGF-β, TNF-α, IL-6, and IL-13 were also suppressed by the CM of ADSC-T. In the Nc/Nga atopic model mice, the CM showed therapeutic effect on DNCB-induced atopic dermatitis. These results indicate that the immortalized ADSC-T maintains the beneficial properties of primary ADSC and could be a versatile cell source for not only research into ADSC but also for production of CM suitable for clinical application.

Pulmonary passage of canine adipose tissue-derived mesenchymal stem cells through intravenous transplantation in mouse model

  • Jaeyeon Kwon;Mu-Young Kim;Soojung Lee;Jeongik Lee;Hun-Young Yoon
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.36.1-36.15
    • /
    • 2024
  • Importance: The intravenous administration of adipose tissue-derived mesenchymal stem cells (AdMSCs) in veterinary medicine is an attractive treatment option. On the other hand, it can result in severe complications, including pulmonary thromboembolism (PTE). Objective: The present study assessed the occurrence of PTE after the intravenous infusion of canine AdMSCs (cAdMSCs) into experimental animals. Methods: Five-week-old male BALB/c hairless mice were categorized into groups labeled A to G. In the control group (A), fluorescently stained 2×106 cAdMSCs were diluted in 200 µL of suspension and injected into the tail vein as a single bolus. The remaining groups included the following: group B with 5×106 cells, group C with 3×106 cells, group D with 1×106 cells, group E with 1×106 cells injected twice with a one-day interval, group F with 2×106 cells in 100 µL of suspension, and group G with 2×106 cells in 300 µL of suspension. Results: Group D achieved a 100% survival rate, while none of the subjects in groups B and C survived (p = 0.002). Blood tests revealed a tendency for the D-dimer levels to increase as the cell dose increased (p = 0.006). The platelet count was higher in the low cell concentration groups and lower in the high cell concentration groups (p = 0.028). A histological examination revealed PTE in most deceased subjects (96.30%). Conclusions and Relevance: PTE was verified, and various variables were identified as potential contributing factors, including the cell dose, injection frequency, and suspension volume.

Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells

  • Park, Hannara;Kim, Jin Soo;Oh, Eun Jung;Kim, Tae Jung;Kim, Hyun Mi;Shim, Jin Hyung;Yoon, Won Soo;Huh, Jung Bo;Moon, Sung Hwan;Kang, Seong Soo;Chung, Ho Yun
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2018
  • Background: Autogenous bone grafts have several limitations including donor-site problems and insufficient bone volume. To address these limitations, research on bone regeneration is being conducted actively. In this study, we investigate the effects of a three-dimensionally (3D) printed polycaprolactone (PCL)/tricalcium phosphate (TCP) scaffold on the osteogenic differentiation potential of adipose tissue-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMSCs). Methods: We investigated the extent of osteogenic differentiation on the first and tenth day and fourth week after cell culture. Cytotoxicity of the 3D printed $PCL/{\beta}-TCP$ scaffold was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, prior to osteogenic differentiation analysis. ADSCs and BMSCs were divided into three groups: C, only cultured cells; M, cells cultured in the 3D printed $PCL/{\beta}-TCP$ scaffold; D, cells cultured in the 3D printed $PCL/{\beta}-TCP$ scaffold with a bone differentiation medium. Alkaline phosphatase (ALP) activity assay, von Kossa staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting were performed for comparative analysis. Results: ALP assay and von Kossa staining revealed that group M had higher levels of osteogenic differentiation compared to group C. RT-PCR showed that gene expression was higher in group M than in group C, indicating that, compared to group C, osteogenic differentiation was more extensive in group M. Expression levels of proteins involved in ossification were higher in group M, as per the Western blotting results. Conclusion: Osteogenic differentiation was increased in mesenchymal stromal cells (MSCs) cultured in the 3D printed PCL/TCP scaffold compared to the control group. Osteogenic differentiation activity of MSCs cultured in the 3D printed PCL/TCP scaffold was lower than that of cells cultured on the scaffold in bone differentiation medium. Collectively, these results indicate that the 3D printed PCL/TCP scaffold promoted osteogenic differentiation of MSCs and may be widely used for bone tissue engineering.

Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro

  • Wi, Hayeon;Lee, Seunghoon;Kim, Youngim;No, Jin-Gu;Lee, Poongyeon;Lee, Bo Ram;Oh, Keon Bong;Hur, Tai-young;Ock, Sun A
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.63.1-63.14
    • /
    • 2021
  • Background: Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable. Objectives: To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro. Methods: Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive (IDO, PTGS2, and PTGES), inflammatory (IL6 and IL10), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR. Results: cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes. Conclusions: The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.

Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts

  • Kim, Chae Min;Oh, Joo Hyun;Jeon, Yeo Reum;Kang, Eun Hye;Lew, Dae Hyun
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.370-377
    • /
    • 2017
  • Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs) express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2), ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05). ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05) in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF

Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids

  • Song, Yeonhwa;Yun, Sujin;Yang, Hye Jin;Yoon, A Young;Kim, Haekwon
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.339-351
    • /
    • 2012
  • Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was $15.1{\pm}0.2{\times}10^4$ as the least for the low density group, and $29.3{\pm}2.8{\times}10^4$ as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids.

T Lymphocyte Subsets and Cytokines in Rats Transplanted with Adipose-Derived Mesenchymal Stem Cells and Acellular Nerve for Repairing the Nerve Defects

  • Jiang, Liang-fu;Chen, Ou;Chu, Ting-gang;Ding, Jian;Yu, Qing
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Objective : The aim of this study was to explore the immunity in rats transplanted with adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve (ACN) for repairing sciatic nerve defects. Methods : ADSCs were isolated from the adipose tissues of Wistar rats. Sprague-Dawley rats were used to establish a sciatic nerve defect model and then divided into four groups, according to the following methods : Group A, allogenic nerve graft; Group B, allograft with ACN; Group C, allograft ADSCs+ACN, and Group D, nerve autograft. Results : At the day before transplantation and 3, 7, 14, and 28 days after transplantation, orbital venous blood of the Sprague-Dawley rats in each group was collected to detect the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets using flow cytometry and to determine the serum concentration of interleukin-2 (IL-2), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and $interferon-{\gamma}$ ($IFN-{\gamma}$) using enzyme-linked immunosorbent assay (ELISA). At each postoperative time point, the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets and the serum concentration of IL-2, $TNF-{\alpha}$, and $IFN-{\gamma}$ in group C were all near to those in group B and group D, in which no statistically significant difference was observed. As compared with group A, the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets and the serum concentration of IL-2, $TNF-{\alpha}$, and $IFN-{\gamma}$ were significantly reduced in group C (p<0.05). Conclusion : The artificial nerve established with ADSCs and ACN has no obvious allograft rejection for repairing rat nerve defects.