• Title/Summary/Keyword: adipose tissue

Search Result 1,058, Processing Time 0.024 seconds

Clinical Application of Adipose Derived Stromal Cell Autograft for Wound Coverage (배양하지 않은 지방조직세포를 이용한 창상피복)

  • Seo, Dong-lin;Han, Seung-Kyu;Chun, Kyung-Wook;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.653-658
    • /
    • 2008
  • Purpose: Skin and soft tissue defect is one of the major challenges faced by plastic surgeons. Adipose derived stromal cells, which can be harvested in large quantities with low morbidity, display multilineage mesodermal potential. Therefore, adipose derived stromal cells have been met with a great deal of excitement by the field of tissue engineering. Recently, Adipose derived stromal cells have been isolated and cultured to use soft tissue restoration. In order to apply cultured cells for clinical purpose, however, FDA approved facilities and techniques are required, which may be difficult for a clinician who cultures cells in a laboratory dedicated to research to utilize this treatment for patients. In addition, long culture period is needed. Fortunately, adipose derived stromal cells are easy to obtain in large quantities without cell culture. The purpose of this study is to present a possibility of using uncultured adipose derived stromal cells for wound coverage. Methods: Seven patients who needed skin and soft tissue restoration were included. Five patients had diabetic foot ulcers, 1 patient got thumb amputation, and 1 patient had tissue defect caused by resection of squamous cell carcinoma. The patients' abdominal adipose tissues were obtained by liposuction. The samples were digested with type I collagenase and centrifuged to obtain adipose derived stromal cells. The isolated adipose derived stromal cells were applied over the wounds immediately after the wound debridement. Fibrin was used as adipose derived stromal cells carrier. Occlusive dressing was applied with films and foams and the wounds were kept moist until complete healing. Results: One hundred to one hundred sixty thousand adipose derived stromal cells were isolated per ml aspirated adipose tissue. All patients' wounds were successfully covered with the grafted adipose derived stromal cells in a 17 to 27 day period. No adverse events related to this treatment occurred. Conclusion: The use of uncultured adipose derived stromal cells was found to be safe and effective treatment for wound coverage without donor site morbidity.

Cellularity of Adipose Tissue Obtained from Different Sex and Growth Stages of Hanwoo Cattle and Sheep

  • Lee, H.J.;Lee, S.C.;Kim, D.W.;Park, J.G.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.155-160
    • /
    • 2000
  • In order to understand the effects of sex or age on cellular characteristics of adipocytes from Hanwoo and sheep, samples were obtained from omental, subcutaneous, intermuscular and intramuscular adipose tissue depots of bulls, steers, heifers and cows in Hanwoo, and perirenal, omental and subcutaneous adipose tissues of fetal lambs, suckling lambs and wethers in sheep. In case of Hanwoo, mean diameter, surface area and volume of adipocytes from each depot were obtained by multisizer II (Coulter Co., UK). Osmium-fixed adipocytes were sized and counted using $560{\mu}m$ aperture. For samples obtained from sheep, cellularity was measured by using microscope and MCV program of Texas Instrument. Bulls had less subcutaneous and kidney fat than steers even though their slaughter and carcass weight were heavier. The amounts of fat from cows were greater in subcutaneous, kidney and internal organs than heifers. Steers had larger adipocytes in subcutaneous, intermuscular and intramuscular adipose tissues than bulls, although the differences were significant only for the subcutaneous adipose tissue depots. Adipocytes appeared to be largest in omental and smallest in intramuscular adipose tissue, although there were no significant differences among tissues. In a comparison of heifers and cows, significant site effects (p<0.05) were shown in adipocyte diameter, surface area and volume, and adipocyte appeared to be largest in omental tissue. Statistical difference (p<0.05) was only shown in cell volume of intramuscular tissue which was higher in cow than heifer. Intramuscular adipose tissue tended to have relatively greater numbers of cells per gram tissue and reflect lesser maturity of intramuscular adipose tissue relative to other adipose tissues. In sheep, regardless of adipose tissue depots, wethers had the greater adipocyte diameters than those at any other growth stage of sheep. Within adipose depots, the ranking of cell size was the greatest in the omental tissue of wether and the lowest in the renal and subcutaneous adipose tissue depots of fetal lamb. The cell size of adipocyte became larger with age, especially from fetal to suckling lamb due to a rapid hypertrophy of both perirenal and subcutaneous adipocytes during the suckling period.

Transcriptional Regulation of Lipogenesis and Adipose Expansion (Lipogenesis와 adipose expansion의 전사조절)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.318-324
    • /
    • 2022
  • PPARγ and C/EBPα are master adipogenic transcription factors (TFs) required for adipose tissue development. They control the induction of many adipocyte genes and the early phase of adipogenesis in the embryonic development of adipose tissue. Adipose tissue continues to expand after birth, which, as a late phase of adipogenesis, requires the lipogenesis of adipocytes. In particular, the liver and adipose tissues are major sites for de novo lipogenesis (DNL), where carbohydrates are primarily converted to fatty acids. Furthermore, fatty acids are esterified with glycerol-3-phosphate to produce triglyceride, a major source of lipid droplets in adipocytes. Hepatic DNL has been actively studied, but the DNL of adipocytes in vivo remains not fully understood. Thus, an understanding of lipogenesis and adipose expansion may provide therapeutic opportunities for obesity, type 2 diabetes, and metabolic diseases. In adipocytes, DNL gene expression is transcriptionally regulated by lipogenesis coactivators, as well as by lipogenic TFs such as ChREBP and SREBP1a. Recent in vivo studies have revealed new insights into the lipogenesis gene expression and adipose expansion. Future detailed molecular mechanism studies will determine how nutrients and metabolism regulate DNL and adipose expansion. This review will summarize recent updates of DNL in adipocytes and adipose expansion in terms of transcriptional regulation.

Utilization of Substrate for the In vitro Lipid Synthesis in the Adipose Tissue of Hanwoo Steers

  • Song, M.K.;Sohn, H.J.;Hong, S.K.;Kim, H.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1560-1563
    • /
    • 2001
  • An ability to utilize the substrates (acetate, glucose and lactate) in the lipid synthesis was measured in vitro with the adipose tissues of 4 locations (subcutaneous, SUBC; intramuscular, INTR; tail and kidney, KIDN) in 12 Hanwoo (Korean native cattle) steers (26 and 28 months of ages, mean body weight 638.6 kg). The rates of lipid synthesis from acetate were higher than those from glucose in SUBC and ITRA adipose tissues, respectively. In contrast, the rates of lipid synthesis from glucose were higher than those from acetate in the adipose tissues of tail and KIDN, respectively. Lactate utilization was lowest in all the locations while that of acetate or glucose had the different trends of utilization in the lipogenesis. The rate of lipid synthesis from acetate was highest in the SUBC adipose tissue but was lowest in the KIDN while that from glucose was also higher in the SUBC adipose tissue than in the other tissue locations. The rate of lipid synthesis from lactate, however, was highest in the tail adipose tissue among the locations.

Adipose tissue macrophage heterogeneity in the single-cell genomics era

  • Haneul Kang;Jongsoon Lee
    • Molecules and Cells
    • /
    • v.47 no.2
    • /
    • pp.100031.1-100031.13
    • /
    • 2024
  • It is now well-accepted that obesity-induced inflammation plays an important role in the development of insulin resistance and type 2 diabetes. A key source of the inflammation is the murine epididymal and human visceral adipose tissue. The current paradigm is that obesity activates multiple proinflammatory immune cell types in adipose tissue, including adipose-tissue macrophages (ATMs), T Helper 1 (Th1) T cells, and natural killer (NK) cells, while concomitantly suppressing anti-inflammatory immune cells such as T Helper 2 (Th2) T cells and regulatory T cells (Tregs). A key feature of the current paradigm is that obesity induces the anti-inflammatory M2 ATMs in lean adipose tissue to polarize into proinflammatory M1 ATMs. However, recent single-cell transcriptomics studies suggest that the story is much more complex. Here we describe the single-cell genomics technologies that have been developed recently and the emerging results from studies using these technologies. While further studies are needed, it is clear that ATMs are highly heterogeneous. Moreover, while a variety of ATM clusters with quite distinct features have been found to be expanded by obesity, none truly resemble classical M1 ATMs. It is likely that single-cell transcriptomics technology will further revolutionize the field, thereby promoting our understanding of ATMs, adipose-tissue inflammation, and insulin resistance and accelerating the development of therapies for type 2 diabetes.

The Interaction of Adipose Tissue with Immune System and Related Inflammatory Molecules (지방조직과 면역체계의 상호작용 및 관련 염증물질에 관한 고찰)

  • Kim, Yu-Hee;Choi, Bong-Hyuk;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.169-178
    • /
    • 2006
  • Background: Adipose tissues were initially introduced as energy storages, but recently they have become famous as an endocrine organ which produces and secretes various kinds of molecules to make physiologic and metabolic changes in human body. It has been studied that these molecules are secreted in abundance as the adipose tissue becomes bigger along with obesity. Furthermore, it has been found that they are mediating systemic inflammation and generation of metabolic diseases such as type 2 diabetes and atherosclerosis. On the basis of these, we studied previous papers which have been researched about the interaction between preadipocytes and macrophages, adipose tissues and lymph nodes, and adipose tissue secreting molecules. Results: Firstly, preadipocytes and macrophages are expressing similar transcriptomes and proteins, and preadipocytes can be converted to mature macrophages which have phagocytic activity. Moreover, the monocytes, which initially located in the bone marrow, are filtrated to the adipose tissue by monocyte chemotatic protein-1 and are matured to macrophages by colony stimulating factor-1. Secondly, adipose tissues and their associated lymph nodes are interacting each other in terms of energy efficiency. Lymph nodes promote lipolysis in adipose tissues, and polyunsaturated fatty acids in adipocytes become energy sources for dendritic cells. Lastly, adipose tissues produce and secrete proinflammatory molecules such as leptin, adiponectin, TNF-${\alpha}$, IL-6, and acute phase proteins, which induce the inflammation and potentially generate metabolic diseases. Conclusion: According to these, we can link adipose tissues to inflammation, but we need to affirm the actual levels and roles of adipose tissue-derived proinflammatory molecules in human body.

A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL (지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구)

  • Lee, Eui-Seok;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

  • Lee, Jong Hoon;Lee, Kuk Han;Kim, Min Ho;Kim, Jun Pyo;Lee, Seung Jae;Yoon, Jinah
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • Background This study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs) from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs) to differentiate into hepatocytes. Methods The adipose-derived stem cells (ADSCs) were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS) staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA). Results The majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers. Conclusions MSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

Relationship between Psychological Factors and Obesity before and after Obesity Treatment in Korean Obese Women (한국 비만 여성에서 비만 치료 전 후의 심리적 상관관계 분석)

  • Cho, Yu-Jeong;Lee, A-Ra;Jung, Won-Seok;Song, Mi-Yeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.155-167
    • /
    • 2009
  • Objectives : Psychological comorbidities are high in patients with obesity and are associated with a variety of medical and dietary problems. This study aims to examine the association between psychological factors and obesity. Methods : This study was performed in pre-menopausal obese($BMI{\geq}25kg/m^2$, waist circumference ${\geq}85cm$) women in Seoul, in 2008 (n=35). Every patient underwent the obesity treatment program. The program included dietary and exercise education, and abdominal mesotherapy for 6 weeks. Simple anthropometry including weight, BMI and Computed Tomography (CT) including Subcutaneous adipose tissue (SAT), Visceral adipose tissue (VAT) and Visceral adipose tissue/Subcutaneous adipose tissue ratio (VSR) were done. To assess psychological factors, the Rosenberg self-esteem scale (SES) questionnaire, Beck depression inventory (BDI) questionnaire and stress response inventory(SRI) questionnaire were administered. Results : 1. All of the obesity indicators (except VSR) decreased significantly after the obesity treatment program. 2. There was a significant relationship between self esteem (SES score) and visceral obesity (VAT and VSR) measured at the end of the program. 3. During the intervention, the more weight, BMI, and subcutaneous adipose tissue decreased, the more self-esteem (SES) increased. There was no relationship between depression (BDI) and obesity. And the change in stress response (SRI) was associated with the change of deep subcutaneous adipose tissue and total abdominal adipose tissue. Conclusions : This study proves that visceral obesity may contribute to low self-esteem, and there is a possibility that the other psychological factors could also be related with obesity in Korean obese women. Individualised antiobesity therapy may be required depending on the patient's psychological characteristics and weight loss could be helpful in order to treat psychological problem in obese patients.

The Relationship Between Epicardial Adipose Tissue and Diabetes Mellitus (심장외막지방두께와 당뇨와의 연관성 연구)

  • Kim, Sun-Hwa;Kim, Jung-Hoon;Im, In-Chul
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.305-312
    • /
    • 2018
  • The incidence of cardiovascular disease increases rapidly after 40's. The thickness of the epicardial adipose tissue was measured to analyze the risk factors affecting the thickness change. We present the cut off value for the epicardial adipose tissue thickness for high impacted variables. For the study, 547 patients underwent echocardiography, epicardial adipose tissue thickness, body mass index, abdominal subcutaneous fat thickness and diabetes mellitus were used as analytical variables. As a result, multiple regression analysis of age group showed that diabetes mellitus was highly influential in all age group, so we could predict the cut off value for the epicardial adipose tissue thickness for diabetes mellitus. As a result of ROC curve analysis, cut off value of 7.44 mm was obtained with sensitivity of 79.6% and specificity of 60.6% for diab etes variab le. Logistic regression analysis b ased on this value showed that the risk for diab etes increased 6 times with each increase in the thickness of the epicardial adipose tissue. Among the various obesity indexes, epicardial adipose tissue is used as an important index especially to prevent the risk of cardiovascular disease. Therefore, we suggest that the use of echocardiography as a routine screening method for the prevention of cardiovascular disease and metabolic syndrome, which is rapidly increasing in patients over 40's age, will enable more effective monitoring. Radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium.