Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.4.318

Transcriptional Regulation of Lipogenesis and Adipose Expansion  

Jang, Younghoon (Department of Biology and Chemistry, Changwon National University)
Publication Information
Journal of Life Science / v.32, no.4, 2022 , pp. 318-324 More about this Journal
Abstract
PPARγ and C/EBPα are master adipogenic transcription factors (TFs) required for adipose tissue development. They control the induction of many adipocyte genes and the early phase of adipogenesis in the embryonic development of adipose tissue. Adipose tissue continues to expand after birth, which, as a late phase of adipogenesis, requires the lipogenesis of adipocytes. In particular, the liver and adipose tissues are major sites for de novo lipogenesis (DNL), where carbohydrates are primarily converted to fatty acids. Furthermore, fatty acids are esterified with glycerol-3-phosphate to produce triglyceride, a major source of lipid droplets in adipocytes. Hepatic DNL has been actively studied, but the DNL of adipocytes in vivo remains not fully understood. Thus, an understanding of lipogenesis and adipose expansion may provide therapeutic opportunities for obesity, type 2 diabetes, and metabolic diseases. In adipocytes, DNL gene expression is transcriptionally regulated by lipogenesis coactivators, as well as by lipogenic TFs such as ChREBP and SREBP1a. Recent in vivo studies have revealed new insights into the lipogenesis gene expression and adipose expansion. Future detailed molecular mechanism studies will determine how nutrients and metabolism regulate DNL and adipose expansion. This review will summarize recent updates of DNL in adipocytes and adipose expansion in terms of transcriptional regulation.
Keywords
Adipose expansion; gene expression; lipogenesis; metabolism; nutrients;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, J. E., Cho, Y. W., Deng, C. X. and Ge, K. 2020. MLL3/MLL4-associated PAGR1 regulates adipogenesis by controlling induction of C/EBPβ and C/EBPδ. Mol. Cell. Biol. 40, e00209-20.
2 Martinez-Botas, J., Anderson, J. B., Tessier, D., Lapillonne, A., Chang, B. H., Quast, M. J., Gorenstein, D., Chen, K. H. and Chan, L. 2000. Absence of perilipin results in leanness and reverses obesity in Lepr (db/db) mice. Nat. Genet. 26, 474-479.   DOI
3 Park, Y. K., Wang, L., Giampietro, A., Lai, B., Lee, J. E. and Ge, K. 2017. Distinct roles of transcription factors KLF4, Krox20, and peroxisome proliferator-activated receptor gamma in adipogenesis. Mol. Cell. Biol. 37, e00554-16.
4 Takeuchi, K. and Reue, K. 2009. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296, E1195-1209.   DOI
5 Wang, B. and Tontonoz, P. 2018. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 14, 452-463.   DOI
6 Strable, M. S. and Ntambi, J. M. 2010. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit. Rev. Biochem. Mol. Biol. 45, 199-214.   DOI
7 Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J. and Spiegelman, B. M. 2002. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16, 22-26.   DOI
8 Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D. J., Lustig, K. D. and Shan, B. 2000. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831-2838.   DOI
9 Song, Z., Xiaoli, A. M. and Yang, F. 2018. Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients 10, 1383.   DOI
10 Witte, N., Muenzner, M., Rietscher, J., Knauer, M., Heidenreich, S., Nuotio-Antar, A. M., Graef, F. A., Fedders, R., Tolkachov, A., Goehring, I. and Schupp, M. 2015. The glucose sensor ChREBP links de novo lipogenesis to PPA Rgamma activity and adipocyte differentiation. Endocrinology 156, 4008-4019.   DOI
11 Gesta, S., Tseng, Y. H. and Kahn, C. R. 2007. Developmental origin of fat: tracking obesity to its source. Cell 131, 242-256.   DOI
12 Allen, B. L. and Taatjes, D. J. 2015. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell. Biol. 16, 155-166.   DOI
13 Cortes, V. A., Curtis, D. E., Sukumaran, S., Shao, X., Parameswara, V., Rashid, S., Smith, A. R., Ren, J., Esser, V., Hammer, R. E., Agarwal, A. K., Horton, J. D. and Garg, A. 2009. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 9, 165-176.   DOI
14 Garg, A. 2004. Acquired and inherited lipodystrophies. N. Engl. J. Med. 350, 1220-1234.   DOI
15 Sanchez-Gurmaches, J., Tang, Y., Jespersen, N. Z., Wallace, M., Martinez Calejman, C., Gujja, S., Li, H., Edwards, Y. J. K., Wolfrum, C., Metallo, C. M., Nielsen, S., Scheele, C. and Guertin, D. A. 2018. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab. 27, 195-209 e196.   DOI
16 Shimano, H., Horton, J. D., Shimomura, I., Hammer, R. E., Brown, M. S. and Goldstein, J. L. 1997. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99, 846-854.   DOI
17 Shimano, H. and Sato, R. 2017. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710-730.   DOI
18 Agarwal, A. K., Arioglu, E., De Almeida, S., Akkoc, N., Taylor, S. I., Bowcock, A. M., Barnes, R. I. and Garg, A. 2002. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat. Genet. 31, 21-23.   DOI
19 Vijayakumar, A., Aryal, P., Wen, J., Syed, I., Vazirani, R. P., Moraes-Vieira, P. M., Camporez, J. P., Gallop, M. R., Perry, R. J., Peroni, O. D., Shulman, G. I., Saghatelian, A., McGraw, T. E. and Kahn, B. B. 2017. Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21, 1021-1035.   DOI
20 Youn, D. Y., Xiaoli, A. M., Kwon, H., Yang, F. and Pessin, J. E. 2019. The subunit assembly state of the Mediator complex is nutrient-regulated and is dysregulated in a genetic model of insulin resistance and obesity. J. Biol. Chem. 294, 9076-9083.   DOI
21 Jang, Y., Park, Y. K., Lee, J. E., Wan, D., Tran, N., Gavrilova, O. and Ge, K. 2021. MED1 is a lipogenesis coactivator required for postnatal adipose expansion. Genes Dev. 35, 713-728.   DOI
22 Yang, F., Vought, B. W., Satterlee, J. S., Walker, A. K., Jim Sun, Z. Y., Watts, J. L., DeBeaumont, R., Saito, R. M., Hyberts, S. G., Yang, S., Macol, C., Iyer, L., Tjian, R., van den Heuvel, S., Hart, A. C., Wagner, G. and Naar, A. M. 2006. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700-704.   DOI
23 Horton, J. D., Shimomura, I., Ikemoto, S., Bashmakov, Y. and Hammer, R. E. 2003. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J. Biol. Chem. 278, 36652-36660.   DOI
24 Jang, Y., Broun, A., Wang, C., Park, Y. K., Zhuang, L., Lee, J. E., Froimchuk, E., Liu, C. and Ge, K. 2019. H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic Acids Res. 47, 607-620.   DOI
25 Lefterova, M. I. and Lazar, M. A. 2009. New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107-114.   DOI
26 Malik, S. and Roeder, R. G. 2010. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761-772.   DOI
27 Nuotio-Antar, A. M., Poungvarin, N., Li, M., Schupp, M., Mohammad, M., Gerard, S., Zou, F. and Chan, L. 2015. FABP4-Cre mediated expression of constitutively active ChREBP protects against obesity, fatty liver, and insulin resistance. Endocrinology 156, 4020-4032.   DOI
28 Gandotra, S., Le Dour, C., Bottomley, W., Cervera, P., Giral, P., Reznik, Y., Charpentier, G., Auclair, M., Delepine, M., Barroso, I., Semple, R. K., Lathrop, M., Lascols, O., Capeau, J., O'Rahilly, S., Magre, J., Savage, D. B. and Vigouroux, C. 2011. Perilipin deficiency and autosomal dominant partial lipodystrophy. N. Engl. J. Med. 364, 740-748.   DOI
29 Beaven, S. W., Matveyenko, A., Wroblewski, K., Chao, L., Wilpitz, D., Hsu, T. W., Lentz, J., Drew, B., Hevener, A. L. and Tontonoz, P. 2013. Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab. 18, 106-117.   DOI
30 Berry, D. C., Stenesen, D., Zeve, D. and Graff, J. M. 2013. The developmental origins of adipose tissue. Development 140, 3939-3949.   DOI
31 Ge, K. 2012. Epigenetic regulation of adipogenesis by histone methylation. Biochim. Biophys. Acta 1819, 727-732.   DOI
32 Ge, K., Guermah, M., Yuan, C. X., Ito, M., Wallberg, A. E., Spiegelman, B. M. and Roeder, R. G. 2002. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature 417, 563-567.   DOI
33 Grant, R. W. and Dixit, V. D. 2015. Adipose tissue as an immunological organ. Obesity (Silver Spring) 23, 512-518.   DOI
34 Dib, L., Bugge, A. and Collins, S. 2014. LXRalpha fuels fatty acid-stimulated oxygen consumption in white adipocytes. J. Lipid Res. 55, 247-257.   DOI
35 Herman, M. A., Peroni, O. D., Villoria, J., Schon, M. R., Abumrad, N. A., Bluher, M., Klein, S. and Kahn, B. B. 2012. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333-338.   DOI
36 Poungvarin, N., Chang, B., Imamura, M., Chen, J., Moolsuwan, K., Sae-Lee, C., Li, W. and Chan, L. 2015. Genomewide analysis of ChREBP binding sites on male mouse liver and white adipose chromatin. Endocrinology 156, 1982-1994.   DOI
37 Park, Y. K. and Ge, K. 2017. Glucocorticoid receptor accelerates, but is dispensable for, adipogenesis. Mol. Cell. Biol. 37, e00260-16.
38 Pearce, J. 1983. Fatty acid synthesis in liver and adipose tissue. Proc. Nutr. Soc. 42, 263-271.   DOI
39 Rosen, E. D. and MacDougald, O. A. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885-896.   DOI
40 Ito, K., Schneeberger, M., Gerber, A., Jishage, M., Marchildon, F., Maganti, A. V., Cohen, P., Friedman, J. M. and Roeder, R. G. 2021. Critical roles of transcriptional coactivator MED1 in the formation and function of mouse adipose tissues. Genes Dev. 35, 729-748.   DOI
41 Zhao, X., Feng, D., Wang, Q., Abdulla, A., Xie, X. J., Zhou, J., Sun, Y., Yang, E. S., Liu, L. P., Vaitheesvaran, B., Bridges, L., Kurland, I. J., Strich, R., Ni, J. Q., Wang, C., Ericsson, J., Pessin, J. E., Ji, J. Y. and Yang, F. 2012. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J. Clin. Invest. 122, 2417-2427.   DOI