• Title/Summary/Keyword: adhesive shear

Search Result 582, Processing Time 0.025 seconds

The Study of Polar Effects of Aluminium Sulfate on the Reduction of Phenolic Resin Spreading Content for the Manufacture of Plywood (황산(黃酸)알루미늄의 극성효과(極性效果)로 인(因)한 합판용(合板用) 페놀 수지(樹脂) 도포량(塗布量)의 감소(減少)에 관(關)한 연구(硏究))

  • Lee, Joung-Sin;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.29-35
    • /
    • 1986
  • This study was carried out to examine the effect of aluminium sulfate addition to the alkali-acid catalyst phenolic resin for the manufacture of the kapur (Dryobalanops spp.) plywood on the reduction of phenolic resin spreading. On the manufacture of plywood, Adhesive Contents such as 50g/$m^2$, 75g/$m^2$ and 150g/$m^2$ were treated. The spreading adhesive content of 50g/$m^2$ and 75g/$m^2$ had been controlled to about 150g/$m^2$ added with the water in order to get sufficient spreading and controlled to pH 4.5 with aluminium sulfate [$Al_2(SO_4)_3$]. The results are summarized as follows: 1. Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.77 to 0.86 and their moisture contents met the KS requirements. 2. In dry and wet shear strengths, 150 $P_{Al{\cdot}Ac}$ adhesive showed the highest and 75 $P_{Al{\cdot}Ac{\cdot}Am}$ adhesive indicated higher value than 150 $P_{Al{\cdot}Ac}$ adhesive. 3. In case of glue shear strength after boiling test, 150 $P_{Al{\cdot}Ac}$ adhesive was the best and adding of aluminium sulfate was not effective on reinforcement of boiling water resistance of phenolic resin, but met KS requirements. 4. 75 $P_{Al{\cdot}Ac{\cdot}Am}$ adhesive showed the good shear strength and met KS requirements. Therefore, adding of aluminium sulfate was very efficient for economical plywood manufacture.

  • PDF

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

Shear Bond Strength Between Zirconia and Porcelain (지르코니아와 포세린의 전단결합강도)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Purpose: To examine the shear bond strengths of zirconia and veneering ceramic according to their surface processing. Methods: The test samples were divided into three groups: one without zirconia surface processing, one sandblasted, and one sandblasted then 3% etched. Then veneering ceramic was fired on all test samples, and their shear bond strengths were measured. Results: The test samples of the control group (Z1) showed the lowest shear bond strengths of $21.82{\pm}1.02$ MPa. The shear bond strengths of Z2 and Z3 ($28.25{\pm}0.72$ and $26.23{\pm}0.82$ MPa, respectively) were relatively higher than those of the control group. The fracture surface of the control group showed adhesive fractures while the test groups had relatively large numbers of cohesive fractures. Conclusion: The shear bond strength was high in the test groups with surface processing while the fracture surfaces showed compound fractures of adhesive and cohesive fractures.

Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Yoon Ho-Chel;Choi Jun-Yong;Kim Yong-Jig;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base

  • Park, Se-Jick;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.262-272
    • /
    • 2022
  • PURPOSE. This study aimed to analyze the shear bond strength between the 3D-printed denture base and the chairside relining material, according to the surface treatment. MATERIALS AND METHODS. Cylindrical specimens were prepared using DENTCA Denture Base II. The experimental groups were divided into 6 (n = 10): no surface treatment (C), Tokuyama Rebase II Normal adhesive (A), sandblasting (P), sandblasting and adhesive (PA), sandblasting and silane (PS), and the Rocatec system (PPS). After bonding the chairside relining material to the center of the specimens in a cylindrical shape, they were stored in distilled water for 24 hours. Shear bond strength was measured using a universal testing machine, and failure mode was analyzed with a scanning electron microscope. Shear bond strength values were analyzed using one-way analysis of variance, and Tukey's honest significant difference test was used for post-hoc analysis (P < .05). RESULTS. Group PPS exhibited significantly higher shear bond strength than all other groups. Groups P and PA displayed significantly higher bond strengths than the control group. There were no significant differences between groups PS and A compared to the control group. Regarding the failure mode, adhesive failure occurred primarily in groups C and A, and mixed failure mainly in groups P, PA, PS, and PPS. CONCLUSION. The shear bond strength between the 3D-printed denture base and the chairside relining material exhibited significant differences according to the surface treatment methods. It is believed that excellent adhesive strength will be obtained when the Rocatec system is applied to 3D-printed dentures in clinical practice.

Application of Single Lap-Shear Test for Extracting Adhesive Bonding Strength of Coating Layer on Galvannealed sheet (합금화용융아연코팅강판의 코팅층 접합강도 평가를 위한 단일 겹치기이음 시험의 적용)

  • Lee, Jung-Min;Lee, Cha-Joo;Lee, Sang-Gon;Ko, Dae-Cheol;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.238-243
    • /
    • 2007
  • This paper is designed to estimate the adhesion strength of coating layer on galvannealed steel sheet using lap shear test. The single lap shear test is the most commonly used standard test for determining the strength of medium-strength and high strength bonds. The bond strength of bonded single lap joints on subjecting the substrates to loads is determined by lap shear forces in the direction of the bonded joint. In this study, specimen for adhesion strength test was made to attach coated sheet to cold rolled sheet and were heated in temperature of 180 for 20minutes. After test, detached parts of coatings on coated sheet were observed using SEM and EDX to identify substrate and complete detachment. The tested results showed that adhesive strength of coating is unrelated to anisotropy of sheet and is difficult to be extracted using conventional theory because of fine cracks of coating layers which were created during annealing process.

  • PDF

Physical Properties of Different Automixing Resin Cements and the Shear Bond Strength on Dentin (수종 Automixing 레진시멘트의 물성과 상아질에 대한 전단결합강도)

  • Song, Chang-Kyu;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different automixing resin cements and the shear bond strength on dentin. For this study, two self-adhesive automixing resin cement(Rely-X Unicem(3M ESPE, St. Paul, USA), Embrace resin cement(Pulpdent, Oakland, USA)) and one chemical polymerizing resin cement(Resiment Ready-Mix(J.L.Blosser Inc., Liberty Missouri, USA)) were used. To evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. The specimens were fabricated using Teflon mould according to manufacturers' instructions and stored for 24 hours in an atmosphere of 100% humidity. To evaluate the shear bond strength on dentin, each cements were adhered to buccal dentinal surface of extracted human lower molars in 2mm diameter. Physical properties and shear bond strengths were measured using universal testing machine(Z010, Zwick GmbH, Ulm, Germany) at a crosshead speed of 0.5mm/min. The physical properties and shear bond strength of different automixing resin cements were statistically analyzed and compared between groups using One-way ANOVA test and Schffe post-hoc test at the 95% level of confidence. The result shows that chemical polymerizing automixing resin cement represents the relatively higher physical properties and shear bond strength than self-adhesive automixing resin cements.

New optimization method of patch shape to improve the effectiveness of cracked plates repair

  • Bouchiba, Mohamed S.;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.301-326
    • /
    • 2016
  • An optimization method of patch shape was developed in this study, in order to improve repair of cracked plates. It aimed to minimize three objectives: stress intensity factor, patch volume and shear stresses in the adhesive film. The choice of these objectives ensures improving crack repair, gaining mass and enhancing the adhesion durability between the fractured plate and the composite patch. This was a multi-objective optimization combined with Finite elements calculations to find out the best distribution of patch height with respect to its width. The implementation of the method identified families of optimal shapes with specific geometric features around the crack tip and at the horizontal end of the patch. Considerable mass gain was achieved while improving the repair efficiency and keeping the adhesive shear stress at low levels.

Micro-shear bond strength of resin-bonding systems to cervical enamel.

  • Shimada, Y.;Kikushima, D.;Iwamoto, N.;Shimura, R.;Ide, T.;Nakaoki, Y.;Tagami, J.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.560.1-560
    • /
    • 2001
  • To evaluate the micro-shear bond strength of current adhesive systems to cervical and mid-coronal enamel. Materials and Two commercially available resin adhesives were investigated; a self-etching primer system(Clearfil SE Bond, Kyraray) and a one-bottle adhesive system(Single Bond, 3M) intended for use with the total-etch wet-bonding technique were employed. Two regions of enamel, cervical and mid-coronal regions, were chosen from the buccal surface of extracted molars and were then bonded with each adhesive system and submitted to the micro-shear bond test.(중략)

  • PDF

Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Bedia, E.A. Adda
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.413-429
    • /
    • 2016
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.