• Title/Summary/Keyword: adhesive protein

Search Result 71, Processing Time 0.043 seconds

Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds (골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용)

  • Choi, Jin-San;Lee, Sang-Jin;Jang, Ji-Wook;Khang, Gil-Son;Lee, Young-Moo;Lee, Bong;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.397-404
    • /
    • 2003
  • The interaction of cell adhesive protein and polypeptide with bone marrow stromal stem cells (BMSCs) grown in tissue engineered films and scaffolds were examined. Several proteins or polypeptide known as cell-adhesive were coated adsorption on poly(lactide-co-glycolide) (PLGA) films and scaffolds and adhesion and proliferation behavior of BMSC on those surfaces were compared. The protein and polypeptide used include collagen IV, fibrinogen, laminin, gelatin, fibronectin, and poly(L-lysine). The protein and polypeptide were adsorbed on the PLGA film surfaces with almost monolayer coverage except poly(L-lysine). BMSCs were cultured for 1, 2, and 4 days on the protein- or polypeptide-adsorbed PLGA films and scaffolds. The cell adhesion and proliferation behaviors were assessed by sulforho damine B assay. It was observed that the protein- or polypeptide-adsorbed surfaces showed better cell adhesion and proliferation than the control.

THE EFFECT OF ADHESIVE GLYCOPROTEIN ON THE ACTIVITY OF HUMAN PULP FIBROBLAST (교원질과 당단백이 치수섬유모세포에 미치는 효과에 관한 연구)

  • Kim, Ju-Yon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.546-558
    • /
    • 1996
  • The purpose of this vitro study was to evaluate the activity of human pulpal cells to adhesive glycoprotein-coated and non-coated culture dishes. Well known adhesive glycoproteins were used, such as type I collagen, type IV collagen, fibronectin, laminin, and vitronectin. Each adhesive glycoproteins applied onto the culture dishes. In this study, the protein coated and non-coated dishes were classified as each groups. Human pulpal cells cultured onto each groups. After 24 hours, 48 hours, 72 hours incubation time, radioactivity with scintillation counter for evaluation of the activity of human pulpal cells. The results as follows : 1. After 24 hours incubation time, activity of human pulpal cells were best in laminin-coated group among groups. Then fibronectin, type I collagen group were better, and all proteins were better than control. 2. After 48 hours incubation time, activity of human pulpal cells were best in fibronectin coated group. 3. After 72 hours incubation time, activity of human pulpal cells were not significantly different in all of adhesive glycoproteins. 4. After 24 hours incubation time, activity of human pulpal cells were best in fibronectin and laminin coated group. Activity of human pulpal cells in type I collagen coated group were better after 24 hours incubation time then 48 hours incubation time.

  • PDF

THE EFFECT OF ADHESIVE GLYCOPROTEINS ON THE ATTACHMENT AND PROLIFERATION OF HUMAN PULPAL CELLS (부착단백질이 사람 치수세포의 부착 및 증식에 미치는 영향에 관한 연구)

  • Shin, Young-Joo;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.54-69
    • /
    • 1996
  • The purpose of this vitro study was to evaluate attachment and proliferation of human pulpal cells to the attachment glycoprotein-coated and non-coated culture dishes. Well known adhesive glycoproteins were used, such as type I collagen, type IV collagen, fibronectin, laminin, and vitronection. Each adhesive glycoproteins applied onto the culture dishes. In this study, the protein coated and non-coated dishes were classified as each groups. Human pulpal cells onto each culture dishes. After 90 minute, 4 hour and 24 hour incubation attached cells in each group were counted with hematocytometer for evaluation of the attachemnt of human pulpal cells. The configurations of attached human pulpal cells were done by SEM observation. The results as follows : 1. After 90 minute incubation the score of attachment of human pulpal cells was best in laminin-coated group among groups. Then fibronectin, type IV collagen group were better, and all proteins were higher than control. 2. After 4 hour incubation the numbers of attachment of human pulpal cells were most in fibronectin coated group. 3. After 24 hour incubation all of adhesive glycoproteins showed high and similar attachemtn effect to human pulpal cells. 4. In SEM observation, fibronectin and type IV collagen groups showed well spreaded human pulpal cells, then laminin group was moderately spreaded, and vitronectin group was mildly spreaded as well as control group.

  • PDF

A Novel Expression System for Recombinant Marine Mussel Adhesive Protein Mefp1 Using a Truncated OmpA Signal Peptide

  • Lee, Sang Jun;Han, Yun Hee;Nam, Bo Hye;Kim, Young Ok;Reeves, Peter R.
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • To express an increased level of recombinant Mefp1 (marine mussel adhesive protein) in soluble form, we constructed expression vectors encoding truncated OmpA signal peptide-Mefp1 fusion proteins. OmpA signal peptide (OmpASP) is the 21 residue peptide fragment of the 23 residue OmpA signal sequence cleavable by signal peptidase I. We successfully produced increased levels of soluble recombinant Mefp1 (rMefp1) with various deletions of OmpASP, and found that the increased expression was caused by the increased pI of the N-terminus of the fusion proteins (${\geq}10.55$). All the OmpA signal peptide segments of 3-21 amino acids in length had the same pI value (10.55). Our results suggest that the pI value of the truncated OmpASP ($OmpASP_{tr}$) play an important role in directional signaling for the fusion protein, but we found no evidence for the presence of a secretion enhancer in OmpASP. For practical applications, we increased the expression of soluble rMefp1 with $OmpASP_{tr}$ peptides as directional signals, and obtained rMefp1 with the native amino terminus (nN-rMefp1) using an $OmpASP_{tr}$ Xa leader sequence that contains the recognition site for Xa protease.

Fabrication of a Superhydrophobic Surface with Adjustable Hydrophobicity and Adhesivity Based on a Silica Nanotube Array

  • Yu, Jae-Eun;Son, Sang-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3378-3382
    • /
    • 2012
  • A superhydrophobic surface with a water contact angle > $150^{\circ}$ has attracted great interest from both fundamental and practical aspects. In this study, we demonstrated that hydrophobicity of a silica nanotube (SNT) array can be easily controlled by the SNT aspect ratio. In addition, the adhesive and anti-adhesive properties were controlled without modifying the hydrophobic surface. Various silica structures on a polydimethylsiloxane substrate were prepared using the desired alumina template. Bundle-arrayed and bowl-arrayed silica surfaces exhibited extraordinary superhydrophobicity due to the large frontal surface area and hierarchical micro/nanostructure. As the strategy used in this study is biocompatible and a wide range of hydrophobicities are capable of being controlled by the SNT aspect ratio, a hydrophobic surface composed of an SNT array could be an attractive candidate for bioapplications, such as cell and protein chips.