• Title/Summary/Keyword: adhesive contact

Search Result 219, Processing Time 0.028 seconds

Finite Element Analysis of Adhesive Contact of Torus-Shaped Bumps (토러스형 돌기의 흡착접촉 유한요소해석)

  • 조성산;양승민
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.249-254
    • /
    • 2002
  • Adhesive contact characteristics of torus-shaped bumps were analyzed using the finite element technique considering the adhesive force. Analyses focused on the effect of rim and bump radii on the adhesive contact behavior such as the jump-to-contact behavior, adhesion hysteresis, pull-off forces, contact region and pressure, and surface and subsurface stresses. Analysis results in the absence of adhesive force were also included to examine the effect of adhesive force. The applicability of torus-shaped bumps to the MEMS structure for reduction of friction is discussed.

토러스 형상 돌기의 흡착특성 유한요소해석

  • Jo, Seong-San;Yang, Seung-Min
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.179-184
    • /
    • 2002
  • Adhesive contact characteristics of torus-shaped bumps, which are commonly used to reduce friction and stiction in hard disks, are analyzed to examine the applicability to the MEMS structure. The analysis is conducted with the finite element technique considering the adhesive force. Torus-shaped bumps of various rim and bump radii are analyzed. The jump-to-contact behavior, adhesion hysterisis, pull-off forces, contact region and pressure, and surface and subsurface stresses are presented and discussed. Analysis results in the absence of adhesive force are also presented to identify the effect of adhesive force.

  • PDF

Fabrication of a novel dry adhesive structure with reduced effective stiffness (유효강성을 줄인 새로운 형상의 건식부착물 제작)

  • Cho, Young-Sam;Jung, Dae-Hwan;Han, Houk-Seop;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.421-425
    • /
    • 2007
  • In the fabrication of dry adhesive structure, increasing contact-points or contact-area is the primary goal because the adhesive force grows in proportion to the contact-area. The simplest way to extend the contact surface is the fabrication by using soft materials. However, the column-array structure could confront the matting phenomenon which columns are stuck together. Therefore, we need a novel design to reduce the effective stiffness with adequate stiff materials like a gecko's setae. In this study, we propose a novel design for the dry adhesive structure. Moreover, we analyzed whether the adhesive structure conforms the rough surface sufficiently through finite element method adopted the non-bonding interaction as the body force. Also, we fabricated the novel structures via UV lithography and some techniques. In addition, we examined the adhesive force of the novel structures.

  • PDF

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

A Study of Adhesive Mechanism of Gecko Adhesion System using Adhesive Beam Contact Model (보 접착 모델을 이용한 게코 접착 시스템의 접착 메커니즘에 대한 연구)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.403-407
    • /
    • 2010
  • Gecko adhesion system consists of beam-shaped seta and spatula which has the role of adhesive pad. In this paper, adhesion mechanism of gecko adhesion system is performed by using adhesive beam contact model. this model has a feature of non-uniform stress profile on the contact surface and adhesion/detachment mechanism is determined by the tensile stress of the contact region. a spatula tip pad has the role of reduction of maximum tensile stress and adhesive force is increased due to this effect. As for a reverse loading case, maximum compressive stress drops by the spatula effect and this cause unsymmetric loading conditions between adhesion and detachment forces. In this study, finite element method is used for the analysis of adhesive beam contact model and the results for spatula effect are presented.

An Analysis of Detachment Mechanism of Gecko Adhesion System using Finite Element Method (유한요소법을 이용한 게코 접착 시스템의 분리 메커니즘에 대한 해석)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.550-553
    • /
    • 2010
  • 본 논문에서는 seta와 spatula로 구성된 게코(gecko) 접착 시스템의 해석을 위한 새로운 adhesive beam contact model을 제시한다. adhesive contact 해석에 있어서 기존의 JKR model은 nano pillar와 같은 형태의 접촉방식의 해석에는 매우 유용하지만, seta와 같이 보(beam)의 형상을 가지는 구조물의 접촉방식의 해석에는 부적합하다. 따라서 본 연구에서는 seta와 같은 보의 형상을 가지는 접촉 시스템의 해석을 위해 adhesive beam contact model을 제시하고, 유한요소 해석을 통하여 접촉면에서의 불균일한 응력분포 상태가 분리 메커니즘에 미치는 영향에 대한 해석 결과를 제시한다. 또한 spatula의 기하학적 형상과 보의 접촉각(contact angle)등이 seta adhesion system의 분리 메커니즘(detachment mechanism)에 미치는 영향에 대한 결과를 제시한다.

  • PDF

finite Element Modeling of a Hemispherical Asperity Adhesively Contacting the Plane Surface of Semi-Infinite Rigid Body (강체평면에 흉착접촉하는 반구헝돌기의 유한요소모델링)

  • Cho, Sung-San;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2436-2441
    • /
    • 2002
  • Finite element technique considering adhesive forces is proposed and applied to analyze the behavior of elastic hemispherical asperity adhesively contacting the plane surface of semi -infinite rigid body. It is demonstrated that the finite element model simulates interfacial phenomena such as jump -to-contact and adhesion hysteresis that cannot be simulated with the currently available adhesive contact continuum models. This simulation aiso provides valuable information on contact pressure, contact region and stress distributions. This technique is anticipated to be utilized in designing a low-adhesion surface profile for MEMS/NEMS applications since various contact geometries can be analyzed with this technique.

Novel measuring technique for biological adhesion forces using AFM (원자현미경을 이용한 생체물질의 접착력 측정기술 개발)

  • Kim S.J.;Moon W.K.;Jun J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.641-644
    • /
    • 2005
  • The study on the interaction forces of some biological materials is important to understanding biological phenomena and their application to practical purpose. This paper introduces a measuring technique for biological adhesive forces using the AFM(Atomic Force Microscope). Since no standardized thesis on adhesive forces exist, the adhesive forces is defined as adhesive forces against a hardened surface of biological materials. To grant the results are meaningful, which is based on the understanding the surface characteristics of biological materials using the AFM, a nominal value of average adhesive force per unit area should be measured. Therefore the modified AFM probe with small micro glass bead was proposed so that it can guarantee the required contact area for measuring the average adhesive forces. A pyrex glass substrate with circular patterns, which was fabricated by micromachining technique, is introduced in order to controll the contact area. The two types of mussel adhesive proteins, Celltak and recombinant-MGFP5, were tested by the proposed measuring method. The test results show that the adhesive force of the mussel adhesive proteins can be reliably measured by use of this method.

  • PDF

A Study on the Heat Transfer and Durability of Carbon Nano Coating for the Safety Improvement of a Pool Boiling System (비등 열전달 시스템의 안정성 향상을 위한 탄소나노튜브 코팅의 열전달 및 내구성에 대한 연구)

  • Jeon, Yong-Han;Kim, Young-Hun;Kim, Nam-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.211-217
    • /
    • 2017
  • In this study, we investigated to the heat transfer performance of coating nano-structure with various shapes and patterns on the heat transfer surface. As a result of the measurement of the 3D nano shape, it was confirmed that the roughness generally increases when the adhesive is sprayed on the coating surface and finished durability experiment. In the case of TEOS adhesive, the roughness increased by $0.074{\mu}m$, $0.012{\mu}m$ and $0.015{\mu}m$, and the contact angle decreased $12.64^{\circ}$, $1.31^{\circ}$, $9.84^{\circ}$ at the coating time of 120 seconds, 180 seconds and 240 seconds, respectively. In the case of PVA adhesive, the roughness increased by $0.069{\mu}m$, $0.056{\mu}m$ and $0.03{\mu}m$, and the contact angle decreased $2.85^{\circ}$, $4.82^{\circ}$, $6.96^{\circ}$ at the coating time of 120 seconds, 180 seconds and 240 seconds, respectively. In the case of DGEBF adhesive, the roughness increased by $0.042{\mu}m$, $0.053{\mu}m$ and $0{\mu}m$, and the contact angle decreased $0.81^{\circ}$ at the coating time of 120 seconds, increased $4.82^{\circ}$, $6.96^{\circ}$ at the coating time of 180 seconds and 240 seconds, respectively. As a result, the durability tends to decrease as more nano-structures are deposited, and 3D nano shapes, contact angles and SEM photographs showed that the performance of the PVA adhesive was superior among the three adhesives.