• Title/Summary/Keyword: adhesive bonding

Search Result 768, Processing Time 0.03 seconds

EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS (Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향)

  • Oh, Eun-Hwa;Choi, Kyoung-Kyu;Kim, Jong-Ryul;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of chlorhexidine (CHX) on microtensile bond strength (${\mu}TBS$) of dentin bonding systems. Dentin collagenolytic and gelatinolytic activities can be suppressed by protease inhibitors, indicating that MMPs (Matrix metalloproteinases) inhibition could be beneficial in the preservation of hybrid layers. Chlorhexidine (CHX) is known as an inhibitor of MMPs activity in vitro. The experiment was proceeded as follows: At first, flat occlusal surfaces were prepared on mid-coronal dentin of extracted third molars. GI (Glass Ionomer) group was treated with dentin conditioner, and then, applied with 2 % CHX. Both SM (Scotchbond Multipurpose) and SB (Single Bond) group were applied with CHX after acid-etched with 37% phosphoric acid. TS (Clearfil Tri-S) group was applied with CHX, and then, with adhesives. Hybrid composite Z-250 and resin-modified glass ionomer Fuji-II LC was built up on experimental dentin surfaces. Half of them were subjected to 10,000 thermocycle, while the others were tested immediately. With the resulting data, statistically two-way ANOVA was performed to assess the ${\mu}TBS$ before and after thermo cycling and the effect of CHX. All statistical tests were carried out at the 95 % level of confidence. The failure mode of the testing samples was observed under a scanning electron microscopy (SEM). Within limited results, the results of this study were as follows; 1. In all experimental groups applied with 2 % chlorhexidine, the microtensile bond strength increased, and thermo cycling decreased the micro tensile bond strength (P > 0.05). 2. Compared to the thermocycling groups without chlorhexidine, those with both thermocycling and chlorhexidine showed higher microtensile bond strength, and there was significant difference especially in GI and TS groups. 3. SEM analysis of failure mode distribution revealed the adhesive failure at hybrid layer in most of the specimen. and the shift of the failure site from bottom to top of the hybrid layer with chlorhexidine groups. 2 % chlorhexidine application after acid-etching proved to preserve the durability of the hybrid layer and microtensile bond strength of dentin bonding systems.

COMPARATIVE STUDY ON THE SHEAR BOND STRENGTH OF ALL-IN-ONE DENTIN BONDING SYSTEM APPLIED TO PRIMARY TEETH (유치에 적용된 All-in-One 상아질 접착 시스템의 전단강도에 관한 비교연구)

  • Kim, Dong-Cheol;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.560-568
    • /
    • 2007
  • This study was performed to compare the shear bond strength of primary enamel & dentin treated by AQ Bond $Plus^{TM}$ and G $Bond^{TM}$, recently developed 6th generation dentin bonding system, to that of Single $Bond^{TM}$ being widely used. Also by observing the resin tag under scanning electron microscope, Resin tags of each material were also observed under scanning electron microscope and compared to one another. The possibility of clinical application of All-in-One system which has an advantage to reduce chair-time for children with difficult behavior pattern was evaluated. The results obtained are as follows: 1. No statistically significant difference between groups was found in shear bond strength of primary enamel. 2. In primary dentin, the shear bond strength of AQ Bond $Plus^{TM}$ was $1.15\;{\pm}\;0.37\;MPa$, G $Bond^{TM}$ was $1.69\;{\pm}\;0.74\;MPa$ and Single $Bond^{TM}$ was $0.56\;{\pm}\;0.11\;MPa$. There were no statistical difference between AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ and between G $Bond^{TM}$ and Single $Bond^{TM}$, whereas statistically significant difference was found between AQ Bond $Plus^{TM}$ and Single $Bond^{TM}$. 3. Under scanning electron microscope, resin tags observed in AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ were very weak and tangled while strong and thick tags were shown with many lateral branches in Single $Bond^{TM}$. The result of the present study coupled with the advantages of less working time over the previous generation suggests that All-in-One system might be effectively used in adhesive dental procedures for primary teeth.

  • PDF

Microtensile bond strength of resin inlay bonded to dentin treated with various temporary filling materials (임시 가봉재가 상아질과 레진 인레이의 미세인장 결합 강도에 미치는 영향)

  • Kim, Tae-Woo;Lee, Bin-Na;Choi, Young-Jung;Yang, So-Young;Chang, Hoon-Sang;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Objectives: This study was aimed to determine the effects of temporary sealing materials on microtensile bond strength between resin-coated dentin and resin inlay and to compare the bonding effectiveness of delayed dentin sealing and that of immediate dentin sealing. Materials and Methods: The teeth were divided into 4 groups: group 1, specimens were prepared using delayed dentin sealing after temporary sealing with zinc oxide eugenol (ZOE); group 2, specimens were prepared using immediate dentin sealing and ZOE sealing; group 3, specimens were prepared using immediate dentin sealing and Dycal (Dentsply) sealing; group 4, specimens were prepared using immediately sealed, and then temporarily sealed with a resin-based temporary sealing material. After removing the temporary sealing material, we applied resin adhesive and light-cured. Then the resin inlays were applied and bonded to the cavity with a resin-based cement. The microtensile bond strength of the sectioned specimens were measured with a micro-tensile tester (Bisco Inc.). Significance between the specimen groups were tested by means of one-way ANOVA and multiple Duncan's test. Results: Group 1 showed the lowest bond strength, and group 4 showed the highest bond strength (p < 0.01). When temporary sealing was performed with ZOE, immediate dentin sealing showed a higher bonding strength than delayed dentin sealing (p < 0.01). Conclusions: Based on these results, immediate dentin sealing is more recommended than delayed dentin sealing in bonding a resin inlay to dentin. Also, resin-based temporary sealing materials have shown the best result.

The effect of using laser for ceramic bracket bonding of porcelain surfaces (세라믹 브라켓 부착 시 레이저를 이용한 포세린 표면처리 효과)

  • An, Kyung-Mi;Sohn, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Objective: The purpose of this study was to investigate the effect of using laser for ceramic bracket bonding of porcelain surfaces and to compare it with conventional treatment of porcelain surfaces. Methods: Ninety feldspathic porcelain specimens were divided into 9 groups of 10, with each group having different surface treatments performed. Surface treatment groups were orthophosphoric acid, orthophosphoric acid with silane, hydrofluoric acid, hydrofluoric acid with silane, sandblasted, sandblasted with silane, laser etched, laser etched with silane, and glazed surface served as a control group. In the laser etched groups, the specimens were irradiated with 2-watt superpulse carbon dioxide ($CO_2$) laser for 20 seconds. Ceramic brackets were bonded with light-cure composite resin and all specimens were stored in water at $37^{\circ}C$ for 24 hours. Shear bond strength was determined in megapascals (MPa) by shear test at 1 mm/minute crosshead speed and the failure pattern was assessed. For statistical analysis, one-way ANOVA and tukey test were used. Results: Statistical analysis showed significant differences between the groups. The HFA + S group showed the highest mean shear bond strength ($13.92{\pm}1.94\;MPa$). This was followed by SB + S ($10.16\;{\pm}\;1.27\;MPa$), HFA ($10.09\;{\pm}\;1.07\;MPa$), L + S ($8.25\;{\pm}\;1.24\;MPa$), L ($7.86\;{\pm}\;0.96\;MPa$), OFA + S ($7.22\;{\pm}\;1.09\;MPa$), SB ($3.41\;{\pm}\;0.37\;MPa$), OFA ($2.81\;{\pm}\;0.37\;MPa$), G ($2.46\;{\pm}\;1.36\;MPa$), Bond failure patterns of HFA and silane groups, except L + S, were cohesive modes in porcelain while adhesive failure was observed in the control group and the rest of the groups. Conclusions : A 2-watt superpulse $CO_2$ laser etching of porcelain surfaces can provide a satisfactory result for porcelain surface treatment for ceramic bracket bonding. Laser irradiation may be an alternative conditioning method for the treatment of porcelain surfaces.

A STUDY ON THE RELATIVE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO COMPOMERS (컴포머에 대한 복합레진의 전단결합강도에 관한 연구)

  • Jeong, Song-Ran;Choi, Nam-Ki;Yang, Kyu-Ho;Kim, Seon-Mi;Song, Ho-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.509-516
    • /
    • 2005
  • For the purpose of comparing the bond strengths of compomers to composite resin, composite Z250, and two polyacid modified composite resin, Dyract AP and F2000, were selected and investigated using universal testing machine for measuring the shear bond strengths. Additionally, the failure modes were examined by observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strength of Dyract AP to Z250 were higher than those of F2000, but there was no statistically significant difference between group 1 and group 3(p>0.05), and groups using fresh compomers showed higher bond strength than those using aged compomers(p<0.05). 2. After measuring the shear bond strength of each group, it was highest in group 5 and was lowest in group 9(p<0.05). 3. Although there was no statistically significant difference, groups treated with thermocycling showed lower bond strengths than those of non-thermocycling groups. 4. Overall compomer/composite resin failures were adhesive. Cohesive failures occurred mainly in groups using bonding agent. Based on these results, the application of a bonding agent on fresh polyacid-modified resin composite increases the bond strength between polyacid-modified resin composite and composite resin. Additionally, the surface of aged polyacid-modified resin composite has to be roughened mechanically and a bonding agent has to be used in combination with composite resin.

  • PDF

A COMPARATIVE STUDY ON THE SHEAR BOND STRENGTH OF DICOR AND G-CERA PORCELAIN LAMINATE VENEER (DICOR와 G-CERA PORCELAIN LAMINATE VENEER의 전단결합강도에 관한 비교연구)

  • Cho Mi-Sook;Yang Jae-Ho;Lee Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.33-41
    • /
    • 1991
  • Cermic has been widely used because of its excellent esthetics and strength. The recently introduced castable ceramic system is regarded as the more esthetic and biocompatible restorative material. The purpose of this study was to compare the shear bond strength of Dicer & G-Cera porcelain laminate veneer according to the type of cement and surface treatment and to observe the surface of bonding failure with SEM. Total forty disks(3.5mm $diam.\times2.0mm$ thickness) were prepared. Forty extracted human maxillary central incisor teeth were stored in saline solution. Ten teeth were bonded to Dicer specimen with Dicer ZPC cement and ten teeth were bonded with Dicer resin cement. Ten silicoated G-Cera specimen and ten non-silicoated G-Cera specimen were bonded to teeth with G-Cera resin cement. Bonded units were mounted in a plastic tube with hard stone and stored in a humidor at $37^{\circ}C$ for 24 hours. Shear bond strength was measured by Instron Universal Testing Machine (Model 1125) and all the specimen were observed with SEM(JEOL, JSM-T2000)and modes of failure were recorded. The obtained results were as follows: 1. The mean shear bond strength of Dicer bonded with Dicer resin cement was 11.62 MPa and that bonded with Dicor ZPC cement was 0.88 MPa : Shear bond strength of Dicer bonded with Dicer resin cement was significantly increased(P<0.05). 2. The mean shear bond strength of silicoated G-Cera was 13.10 MPa and that of non silicoated G-Cera was 10.93 MPa : Shear bond strength of silicoated G-Cera was not significantly increased (P>0.05). 3. Shear bond strength of Dicer and G-Cera porcelain laminate veneer was not significantly different (P>0.05). 4. In observation of bond failure with SEM, Dicer bonded with Dicer ZPC cement exhibited adhesive failure. Dicer bonded with Dicer resin cement and silicoated and non silicoated G-Cera exhibited cohesive failure.

  • PDF

A COMPARATIVE STUDY ON SHEAR BOND STRENGTHS INFLUENCED BY TIME ELAPSED AFTER BRACKET BONDING WITH A LIGHT-CURED GLASS IONOMER CEMENT (광중합형 글래스아이오노머 시멘트의 브라켓 접착후 시간 경과에 따른 전단결합강도의 비교연구)

  • Lee, Ki-Soo;Lim, Ho-Nam;Park, Young Guk;Shin, Kang-Seob
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.605-611
    • /
    • 1995
  • The purpose of this study was to evaluate effects of time on shear bond strengths of a light-cured glass ionomer cement and chemically cured resin cement to enamel, and to observe the failure patterns of bracket bondings. Shear bond strength of a light-cured glass ionomer cement were compared with that of a resin cement. Metal brackets were bonded on the extracted human bicuspids. Specimens were subjected to a shear load(in an Instron machine) after storage at room temperature for 5 and 15 minutes; after storage in distilled water at $37^{\circ}C$ for 1 or 35 days. The deboned specimens were measured In respect of adhesive remnant index. The data were evaluated and tested by ANOVA, Duncan's multiple range test, and t-test, and those results were as follows. 1. The shear bond strength of light-cured glass ionomer cement is higher than that of resin cement at 5 and 15 minutes. 2. The shear bond strengths of both light-cured glass ionomer cement and resin cement increase with time. There was no significant difference in those of both 1 day group and 35 day group 3. Light-cured glass ionomer cement is suitable as orthodontic bracket adhesives

  • PDF

EFFECTS OF VARIOUS ETCHING TIMES ON DEPTH OF ETCH AND SHEAR BOND STRENGTH OF AN ORTHODONTIC RESIN TO BOVINE ENAMEL (부식시간이 소의 법랑질 부식깊이와 교정용 레진의 전단결합강도에 미치는 영향)

  • Kim, Jeong-Hoon;Lee, Ki-Soo;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.23 no.1 s.40
    • /
    • pp.75-88
    • /
    • 1993
  • Recent reports indicate that shorter etching times than 60 seconds can be adopted without affecting the bond strength and clinical disadvantages. The purpose of this in vitro study was to compare the shear bone strength and to measure depth of etch at different etching time length. One hundred and eight extracted bovine lower central incisors were embedded each in a tooth cup with cold-cure acrylic resin. The facial surfaces of the teeth were ground wet with 600-, 800-, 1000-, and 1200-grit Sic papers, and finally polished with a water slurry of extrafine silicon carbide powder, washed with tap water, and dried with hot air. Nine groups of nine prepared teeth were etched with a commercial($38\%$ phosphoric acid solution) for 0, 5, 10, 15, 20, 30, 60, 90, and 120 seconds, respectively, rinsed with tap water, and dried with hot air. One conditioned teeth from every group was selected randomly for the scanning electron microscopic examination, and the remaining eight teeth of the groups were used for measuring the push shear bond strength after bonding brackets and immensing them in the $36.5^{\circ}C$ water for 24 hours. Another nine groups of three teeth were used for measuring the depth of etch and surface roughness with a surface profilometer. after pieces of adhesive tape of 3mm inner diameter positioned on the ground enamel surfaces, and etched with the above mentioned. The data obtained form the above expeiments were analysed statistically with one way ANOVA and Dunkan's multiple range test with the $95\%$ confidence level. The results and conclusion of the study were as follows; 1. The results of shear bond strength for the given experimental etching times were not statistically different, but showed the tendency of decreasing shear bone strength after over 60 seconds etching times. 2. On the scanning election microscopic examination, it was observed that the morphological patterns of etched enamel surface for 5 to 20 seconds were similar and consitent, and those for 30 to 120 seconds showed increasing over-etched patterns depending on the length of etching times. 3. The depth of etch was increased almost proportionally by the length of etching times, but it was not associated with the shear bond strength. 4. The surface roughness increased depending on the length of etching times, but it was not associated with the shear bond strength. 5. This experiment indicated that proper etching time with $38\%$ phosphoric acid solution is in the range of 5 to 30 seconds.

  • PDF

Reflow Behavior and Board Level BGA Solder Joint Properties of Epoxy Curable No-clean SAC305 Solder Paste (에폭시 경화형 무세정 SAC305 솔더 페이스트의 리플로우 공정성과 보드레벨 BGA 솔더 접합부 특성)

  • Choi, Han;Lee, So-Jeong;Ko, Yong-Ho;Bang, Jung-Hwan;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • With difficulties during the cleaning of reflow flux residues due to the decrease of the part size and interconnection pitch in the advanced electronic devices, the need for the no-clean solder paste is increasing. In this study, an epoxy curable solder paste was made with SAC305 solder powder and the curable flux of which the main ingredient is epoxy resin and its reflow solderability, flux residue corrosivity and solder joint mechanical properties was investigated with comparison to the commercial rosin type solder paste. The fillet shape of the cured product around the reflowed solder joint revealed that the curing reaction occurred following the fluxing reaction and solder joint formation. The copper plate solderability test result also revealed that the wettability of the epoxy curable solder paste was comparable to those of the commercial rosin type solder pastes. In the highly accelerated temperature and humidity test, the cured product residue of the curable solder paste showed no corrosion of copper plate. From FT-IR analysis, it was considered to be resulted from the formation of tight bond through epoxy curing reaction. Ball shear, ball pull and die shear tests revealed that the adhesive bonding was formed with the solder surface and the increase of die shear strength of about 15~40% was achieved. It was considered that the epoxy curable solder paste could contribute to the improvement of the package reliability as well as the removal of the flux residue cleaning process.

Effects on Bond Strength between Zirconia and Porcelain according to Etching Treatment and Low Temperature Degradation (지르코니아 표면에칭처리와 저온열화현상이 지르코니아와 전장도재의 결합강도에 미치는 영향)

  • Park, Jin-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Ji-Hwan;Kim, Hae-Young
    • Journal of dental hygiene science
    • /
    • v.14 no.2
    • /
    • pp.140-149
    • /
    • 2014
  • The purpose of this study was to investigate the influence of etching surface treatment and aging treatment of zirconia on the shear bond strength between zirconia core and veneered ceramic. Four groups of zirconia-ceramic specimens were prepared; 1) NEZ group (no etching zirconia), 2) EZ group (etching zirconia), 3) ANEZ group (aging and no etching zirconia), 4) AEZ group (aging and etching zirconia). The shear bond strength between zirconia and porcelain was measured using Instron Universal Testing Machine. Surface texture with crystalline structure of zirconia surface was examined by the field emission scanning electron microscopy (FE-SEM) with ingredient analysis. The fractured surfaces of specimens were examined to determine the failure pattern by a digital microscope. The mean${\pm}$standard deviation of shear bond strengths were $23.47{\pm}3.47$ Mpa in NEZ, $28.30{\pm}4.34$ Mpa in EZ, $21.85{\pm}4.65$ Mpa in ANEZ, $24.65{\pm}3.65$ Mpa in AEZ group, respectively, and were significantly different (p<0.05). The average shear bond strength was largest in EZ group, followed by AEZ, NEZ, and ANEZ groups. Most specimens in NEZ group showed adhesive failure and most specimens in EZ, AEZ, and ANEZ group showed mixed failure. Surface of etching treatment group (EZ and AEZ) showed complex micro-structure and irregular surface texture which may facilitate mechanical interlocking, while untreated zirconia surface presented simpler micro-structure. In conclusion, an etching treatment improved bonding strength between zirconia and porcelain by forming mechanical interlocking.