• Title/Summary/Keyword: adhesion ratio

Search Result 458, Processing Time 0.025 seconds

Effects of Herbal-acupuncture with Coicis Semen Solution at Joksamni (ST36) on Collagen-induced Arthritis in DBA/1J Mouse (족삼리(足三里) 의이인약침(薏苡仁藥鍼)이 Collagen으로 유발(誘發)된 생쥐의 관절염(關節炎)에 미치는 영향(影響))

  • Lee, Seong-No;Lee, Hyun
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.111-129
    • /
    • 2007
  • Objectives & Methods : The purpose of this study is to observe the effects of Coicis Semen Herbal-acupuncture solution (CS-HAS) at the Joksamni (ST36) on the collagen-induced arthritis in the DBA/1J mouse. The author performed several experiments to analyze the effects of CS-HAS on arthritis; change of the weight; the spleen size and adhesion rate; serum cytokine levels; serum antibody levels; changes of immunocyte counts; the histological changes of joint. Results : In the Coicis Semen Herbal-acupuncture (CS-HA), arthritis index, the incidence of arthritis, and the degree of joint edema were decreased. In CS-HA, there was no weight loss. The size of the spleen, adhesion rate, and the edema and transformation of joint were lowered. In CS-HA, the levels of IL-1${\beta}$, IL-6, TNF-${\alpha}$, IFN-${\gamma}$, IgG, IgM, and anti-collagen II in serum and the levels of IFN-${\gamma}$, IL-4, IL-10 in spleen were significantly decreased. In CS-HA, the expression ratios of $CD45^+$ to $CD3e^+$ and $CD8^+$ to $CD4^+$ were decreased. Also, the overall $CD4^+/CD8^+$ cell ratio was lowered in spleen. Ratios of the $CD4^+/CD25^+$, $CD45^+/CD69^+$ cells were decreased in lymph nodes. In addition, ratios of the $CD3^+/CD69^+$, $CD11b^+/Gr-1^+$ cells were also decreased in synovium. In the histological study, the cartilage destruction and synovial cell proliferation, and collagen fiber destruction were decreased with CS-HA treated group. Conclusions : From the results mentioned above, it is suggested that CS-HA at the ST36 has several significant effects on the collagen-induced arthritis.

  • PDF

Synthesis and Comparison of EB- and UV-curable Monomers for Anti-fogging Coatings (전자선 및 자외선 경화형 방무코팅용 모노머의 합성 및 물성비교)

  • Cho, Jung-Dae;Lee, Jae-Sung;Kim, Yang-Bae;Hong, Jin-who
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.449-455
    • /
    • 2005
  • Electron beam (EB) and ultraviolet (UV) curable monomers (AF-1 with mono functionality and AF-2 with tetra functionality) containing hydroxy and acrylate group for anti-fogging coating were synthesized and applied to EB and UV-curable coating systems. The synthesized reactive AF-1 and AF-2 monomers were first formulated into UV-curable system and the optimization of film properties for anti-fogging coating was investigated. The 5:17.5 ratio for AF-1 and AF-2 was found to be the best optimized formulation for anti-fogging coating without destroying the other essential properties such as hardness, solvent resistance, and adhesion. The optimized formulation was applied to the EB-curable system, and EB and UV-curable systems were compared. The results demonstrated that both EB and UV-cured films coated on PC sheet showed excellent anti-fogging properties; however, the EB-cured film exhibited better hardness, adhesion, and water repellent properties than the UV-cured film.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

Influence of Coating Defect Ratio on Tribological Behavior Determined by Electrochemical Techniques (전기화학적 분석을 통해 산출된 코팅 결함율이 트라이볼로지적 특성에 미치는 영향 평가)

  • Lee Young-Ze;Kim Woo-Jung;Ahn Seung-Ho;Kim Ho-Gun;Kim Jung-Gu;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2004
  • Many of the current development in surface modification engineering are focused on multilayered coatings, which have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel in this study. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N,\;WC-Ti_{0.53}Al_{0.47}N,\;WC-Ti_{0.5}Al_{0.5}N\;and\;WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behaviors. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a normal load of 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball $(H_R\;=\;66) $ having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with energy-dispersive spectroscopy (EDS). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$coatings with increasing of Al (aluminum) concentration.

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

Synthesis, Characterization and Haemocompatibility of Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers (폴리(스티렌-이소부틸렌-스티렌) 삼중블록 공중합체의 합성, 분석 및 혈액적합성)

  • Ren, Ping;Wu, Yi-Bo;Guo, Wen-Ii;Li, Shu-Xin;Mao, Jing;Xiao, Fei;Li, Kang
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • The synthesis of well-defined poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock copolymers was accomplished by cationic sequential block copolymerization of isobutylene (IB) with styrene (St) using 1,4-di(2-chloro-2-propyl) benzene (DCC) /$TiCl_4$/2,6-di-tert-butylpyridine(DtBP) as an initiating system in methyl chloride ($CH_3Cl$)/methylcyclohexane(MeChx) (50/50 v/v) solvent mixture at $-80^{\circ}C$. The triblock copolymers exhibited excellent thermoplastic and elastomeric characteristics. Tensile strengths and Shore hardness increased with increasing polystyrene (PS) content, while elongation at break decreased. The blood-compatibility of SIBS was assessed by SEM observation of the platelet adhesion, blood clotting time and haemolysis ratio. The haemolysis ratios were below 5% which met the medical materials standard. The platelet adhesion test further indicated that SIBS block copolymers had a good blood compatibility.

Characteristics and Properties of Fluoro/Silicone Rubber Blend System (불소/실리콘 고무 블렌드의 특성과 물성)

  • Lee, Jin-Kook;Song, Hwan-Jae;Kim, Mi-Ra
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.14-19
    • /
    • 2008
  • In this study, silicone rubber (SR40) and fluororubber (FKM) mixture blends were prepared by various weight percentages, and their properties were characterized. The crosslinking rate increased as the contents of SR40 due to the crosslinking agent in SR40. As contents of FKM increase in SR40/FKM blends, thermal decomposition temperature of blends increased. When SR40/FKM blend ratio was at 50/50, the thermal decomposition stabilization was higher than that of pure SR40. The contact angle of SR40/FKM blend increased as the increase of SR40 contents in blend. All composition of SR40/FKM blends showed typical phase separation morphology. As the contents of SR40 increase in SR40/FKM blend, the degree of separation in SR40/FKM blends also increased.

  • PDF

Interfacial Charge Transport Anisotropy of Organic Field-Effect Transistors Based on Pentacene Derivative Single Crystals with Cofacial Molecular Stack (코페이셜 적층 구조를 가진 펜타센 유도체 단결정기반 유기트랜지스터의 계면 전하이동 이방성에 관한 연구)

  • Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.155-161
    • /
    • 2019
  • Understanding charge transport anisotropy at the interface of conjugated nanostructures basically gives insight into structure-property relationship in organic field-effect transistors (OFET). Here, the anisotropy of the field-effect mobility at the interface between 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) single crystal with cofacial molecular stacks in a-b basal plane and SiO gate dielectric was investigated. A solvent exchange method has been used in order for TIPS-pentacene single crystals to be grown on the surface of SiO2 thin film, corresponding to the charge accumulation at the interface in OFET structure. In TIPS-pentacene OFET, the anisotropy ratio between the highest and lowest measured mobility is revealed to be 5.2. By analyzing the interaction of a conjugated unit in TIPS-pentacene with the nearest neighbor units, the mobility anisotropy can be rationalized by differences in HOMO-level coupling and hopping routes of charge carriers. The theoretical estimation of anisotropy based on HOMO-level coupling is also consistent with the experimental result.

Synthesis and Properties of Waterborne Polyurethane Acrylate Adhesive (수분산 폴리우레탄 아크릴 접착제의 합성 및 물성 연구)

  • Lee, Seung Hwan;Cheon, Jung Mi;Jeong, Boo Young;Kim, Han-Do;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.156-161
    • /
    • 2015
  • In this study, waterborne polyurethane acrylate were synthesized with polyester polyol, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA), acrylate monomer to improve the properties and peel strength. In addition, the properties of the synthesized waterborne polyurethane acylate was evaluated through FT-IR, particle size analysis, UTM, peel strength. As the acrylic acid content increased, particle size increased. In the results of mechanical properties, when the acrylic acid contents increased, tensile strength was increased but elongation was decreased. All peel strength was improved as the acrylic acid contents of WPUA and acrylate ratio of PU/acrylate increased. Optimum peel strength obtained when acrylic acid was 0.5 wt%.