• 제목/요약/키워드: additive process

검색결과 841건 처리시간 0.023초

PBF 시스템에서 고분자 및 금속 소재 적용성 연구 (Study for Applicability of Polymer and Polymer Coated Metal Materials within PBF System)

  • 김동수;배성우
    • 한국정밀공학회지
    • /
    • 제32권9호
    • /
    • pp.765-771
    • /
    • 2015
  • In an Additive Manufacturing (AM) system emplying the Powder Bed Fusion (PBF) system, polyamide-12 powder is currently recognized as the general material used. The Polyamide-12 powder's properties include an average particle size of 58 $58{\mu}m$, a density of 0.59 g/cm3, and melting point of $184^{\circ}C$, and can also be to used coat materials for metal powder. For this reason, the sintering process is similar to the polymer powder and polymer coated metal powder process, except during the post-process. The polyamide-12 powder has some disadvantages such as its high cost and the fact that it can only be used for the provided equipment from the maker. Therefore, this study aims to perform the applicability of new material, polymer and polymer coated metal, to the PBF system.

가스 분무법을 이용한 Powder Bed Fusion(PBF) 공정용 AlSi10Mg 합금 분말 제조 (Manufacture of AlSi10Mg Alloy Powder for Powder Bed Fusion(PBF) Process using Gas Atomization Method)

  • 임원빈;박승준;윤여춘;김병철
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.120-126
    • /
    • 2021
  • In this study, AlSi10Mg alloy powders are synthesized using gas atomization and sieving processes for powder bed fusion (PBF) additive manufacturing. The effect of nozzle diameter (ø = 4.0, 4.5, 5.0 and 8.0 mm) on the gas atomization and sieving size on the properties of the prepared powder are investigated. As the nozzle diameter decreases, the size of the manufactured powder decreases, and the uniformity of the particle size distribution improves. Therefore, the ø 4.0 mm nozzle diameter yields powder with superior properties. Spherically shaped powders can be prepared at a scale suitable for the PBF process with a particle size distribution of 10-45 ㎛. The Hausner ratio value of the powder is measured to be 1.24. In addition, the yield fraction of the powder prepared in this study is 26.6%, which is higher than the previously reported value of 10-15%. These results indicate that the nozzle diameter and the post-sieve process simultaneously influence the shape of the prepared powder as well as the satellite powder on its surface.

Removal of NOx using electron beam process with NaOH spraying

  • Shin, Jae Kyeong;Jo, Sang-Hee;Kim, Tae-Hun;Oh, Yong-Hwan;Yu, Seungho;Son, Youn-Suk;Kim, Tak-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.486-492
    • /
    • 2022
  • Nitrogen oxides (NOx; NO and NO2) are major air pollutants and can cause harmful effects on the human body. Electron Beam Flue Gas Treatment (EBFGT) is a technology that generates electrons with an energy of 0.5-1 MeV using electron accelerators and effectively processes exhaust gases. In this study, NOx was removed using an electron beam accelerator with spraying additives (NaOH and NH4OH). NO and NO2 were 100% and more than 94% removed, respectively, at an electron beam absorbed dose of 20 kGy and an additive concentration of 0.02 M (mol/L). In most cases, NOx was removed better with lower initial NOx concentrations and higher electron beam absorbed doses. As the irradiation strength (mA) of the electron beam increases, the probability of electron impact on the material accordingly rises, which may lead to increase removal efficiency. The results of the present study show that the continuous electron beam process using additives achieved more effective removal efficiency than either individual process (wet-scrubbing or EB irradiation only).

겔 캐스팅 공정을 위한 알루미나 슬러리에서의 첨가제 함량 변화에 따른 겔화특성 평가 (Evaluation of Gelation Characteristics with The Variation of Additive Contents in The Alumina Slurry for Gel Casting Process)

  • 정준기;오창용;하태권
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.290-295
    • /
    • 2022
  • Recently, the use of high-tech ceramic parts in functional electronic parts, automobile parts and semiconductor equipment parts is increasing. These ceramics materials are required to have high reproducibility, reliability, large size and complex shapes. The researchers initiated the work to develop a new shaping method called gel casting, which allows high performance ceramic materials with a complex shape to be produced. The manufacturing process parameters of gel casting include uniform mixing of the initiator, bubble removal, and slip injection. In this study, we analyzed the dispersion and gelation characteristics according to the change in the additive content of the alumina slurry in the gel casting process. The alumina slurry for gel casting was prepared by mixing a solvent, a monomer and a dispersant through a ball mill. Alumina powder and a gelation initiator were added to the mixed solution, and ball milling was performed for 24 hours. A viscosity of 6,435 cps and a stable zeta potential value were obtained under the conditions of alumina powder content of 55 vol% and dispersant 2.0 wt%. After curing for 12 hours by adding aps 0.1wt%, TEMED 0.2wt%, and Monomer 3, 5wt%, it was possible to separate from the molding cup, confirming that the gelation was completed.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

DMT기술을 활용한 형상적응형 냉각채널 적용 사례 연구 (Case Studies on Applications of Conformal Cooling Channel Based On DMT Technology)

  • 김우성;홍명표;박준석;이윤선;차경제;성지현;정민화;이예환
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.9-14
    • /
    • 2015
  • The Direct Metal Tooling (DMT) process is a kind of additive manufacturing processes, which is developed using various commercial steel powders, such as P20, P21, SUS420, and other non-ferrous metal powders. The DMT process is a versatile process that can be applied to various fields, such as the molding industry, the medical industry, and the defense industry. Among them, the application of the DMT process to the molding industry is one of its most attractive and practical applications, since the conformal cooling channel cores of injection molds can be fabricated at a slightly expensive cost by using the hybrid fabrication method of DMT technology compared with parts fabricated with machining technology. The main objectives of this study are to provide various characteristics of the parts made using the DMT process compared with the same parts machined from bulk materials and evaluate the performance of the injection mold equipped with a conformal cooling channel core fabricated using the hybrid method of the DMT process.

중온화 첨가제(LEADCAP(R))를 사용한 중온 아스팔트 바인더의 특성 평가 (A Study of Performance Evaluation of Warm Asphalt Binder Properties using LEADCAP(R) additive)

  • 이재준;양성린;권수안;황성도
    • 한국도로학회논문집
    • /
    • 제13권2호
    • /
    • pp.1-8
    • /
    • 2011
  • 본 연구의 목적은 중온화 첨가제(LEADCAP$^{(R)}$)를 사용한 중온 아스팔트 바인더의 노화 방법에 따른 물성 변화 특성을 평가하고자 하였다. 아스팔트 바인더의 노화 거동을 모사하기 위해 단기노화인 RFTO를 실시하였으며, 햇빛에 의한 자연 노화 거동을 알아보기 위해 자외선 경화기를 이용하여 자외선에 의한 열화거동을 모사하였다. 이러한 열화 중온 아스팔트 바인더의 역학적인 물성과 유변동학적인 특성을 시험하기 위해서 만능시험기(UTM)과 동적전단유동기를 이용하여 직접인장력과 유변동학적인 거동을 평가하였다. 또한, 열분석 장비를 이용하여 온도에 따른 중온 아스팔트 바인더의 특성을 평가하여, 자외선 노출에 따른 열화가 발생하여도 온도에 따른 물성 변화가 많이 발생하지 않음을 발견하였다. $70^{\circ}C$에서 중온화 첨가제가 첨가한 단기노화 중온 아스팔트 바인더의 경우, PG 등급에서의 고온 등급의 기준값을 만족함을 알 수 있었다. 또한 저온에서 중온 아스팔트 바인더의 인장 특성을 평가한 결과, 인장강도 향상과 함께 인장력이 증가됨을 알 수 있었다.

FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구 (A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer)

  • 이동건;박본영
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.

잡음 ARMA 프로세스의 적응 매개변수추정 (Adaptive Parameter Estimation for Noisy ARMA Process)

  • 김석주;이기철;박종근
    • 대한전기학회논문지
    • /
    • 제39권4호
    • /
    • pp.380-385
    • /
    • 1990
  • This Paper presents a general algorithm for the parameter estimation of an antoregressive moving average process observed in additive white noise. The algorithm is based on the Gauss-Newton recursive prediction error method. For the parameter estimation, the output measurement is modelled as an innovation process using the spectral factorization, so that noise free RPE ARMA estimation can be used. Using apriori known properties leads to algorithm with smaller computation and better accuracy be the parsimony principle. Computer simulation examples show the effectiveness of the proposed algorithm.

곡선형 형상적응형 냉각채널을 갖는 금형 코어 제작을 위한 DMT 공정개발 (Development of Direct Metal Tooling (DMT) Process for Injection Mold Core with Curved Conformal Cooling Channel)

  • 한지수;유만준;이민규;이윤선;김우성;이호진;김다혜;성지현;차경제
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.103-108
    • /
    • 2019
  • The cooling rate and the uniformity of mold temperature, in the injection molding process, possess great influences on the productivity and quality of replications. The conformal cooling channel, which is of a uniform spacing from the mold cavity by the metal additive manufacturing process, receives much attention recently. The purpose of this study is to develop a mold core with a curved conformal cooling channel for a pottery-shaped thick-wall cosmetic container through the hybrid method of direct metal tooling (DMT) process. In this study, we design a mold core that contains the curved cooling channel for the container. A method that divides the cavity is proposed and the DMT process is carried out to form the curved cooling channel. The test mold core, with the curved conformal cooling channel, has been fabricated by the proposed method to confirm the feasibility of the design concept. We show that no leakage is observed for the additive manufactured test mold core, and its physical properties demonstrate that it can be sufficiently used as the injection mold core.