• Title/Summary/Keyword: additive effects

Search Result 1,311, Processing Time 0.03 seconds

Storage Stability of Baikseolgi (백설기의 저장성 연구)

  • Yeo, Kyung-Mok;Chang, Moon-Jeong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.218-222
    • /
    • 1999
  • The effects of storage temperature, moisture content and the concentration of additives, such as sucrose fatty acid ester(SE), isomaltooligosaccharide(IO) and glycerin(GL), on texture properties, hardness(HA), cohesiveness(CO) and chewiness(CH) of Baikseolgi after 7 days storage were analyzed by response surface methodology(RSM). The contour values of HA of SE added Baikseolgi at 20, 50 and $80^{\circ}C$ of storage temperate were $1500{\sim}3200,\;500{\sim}1300$ and $100{\sim}400\;g_f$, respectively. The HA of IO or GL added Baikseolgi decreased with increased storage temperature, moisture content and additive concentration. The storage temperature was the most significant factor affecting the HA of Baikseolgi. However, the second and third significant factors were moisture content and additive concentration, respectively. These results imply that the control of storage temperature is the most effective method to increase the storage stability of Baikseolgi. The CO of IO or GL added Baikseolgi was increased by the change of strage temperature from $20{\circ}\;to\;50{\circ}$. While, there was no significant difference between $50{\circ}\;and\;80{\circ}$ of storage temperature. The CO of IO or GL added Baikseolgi was maximized around 40% of moisture content and that of GL added Baikseolgi was minimized around 0.5% of GL concentration. The storage temperature, additive concentration and moisture content were the first, second and third affacing factors on the CO of Baikseolgi, respectively. The CH of Baikeolgi was decreased by increasing storage temperature, moisture content and additive concentration. The storage temperature, moisture content and additive concentration were the first, second and third affacting factors on the CH of Baikseolgi, respectively.

  • PDF

Effects of Draw Ratio and Additive CaCO3 Content on Properties of High-Performance PE Monofilament (연신비와 첨가제 CaCO3가 PE 모노필라멘트의 물성에 미치는 영향)

  • Park, Eun-Jeong;Kim, Il-Jin;Lee, Dong-Jin;Kim, Jung-Soo;Lee, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.290-296
    • /
    • 2021
  • The effect of draw ratio (8, 10, 12, 14 times) and additive CaCO3 content (0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) on the properties of high-performance PE monofilament was investigated in this study. As the draw ratio increased (8-14 times), the melting enthalpy (ΔHf), crystallinity, specific gravity, and tensile strength increased significantly. However, the draw ratio had little effect on the melting temperature (Tm) and crystallization temperature (Tc). The seawater fastness (stain and fade) of the hydrophobic PE monofilament prepared in this study showed an excellent grade of 4-5 in all draw ratios. To investigate the effect of the additive CaCO3 content on the properties of high-performance PE monofilament, the draw ratio was fixed at 14 times. It was found that the tensile strength of the PE monofilament sample containing 0.5 wt% of CaCO3 was much greater compared to the sample without CaCO3, but the elongation of the sample containing 0.5 wt% of CaCO3 was much less than the sample with 0 wt% CaCO3. However, in the case of the sample containing more than 0.5 wt% CaCO3, the tensile strength slightly decreased and the elongation slightly increased as the CaCO3 content increased. The seawater fastness (stain and fade) of the hydrophobic PE monofilament showed excellent grades of 4-5, regardless of the amount of additives. From the above results, it was found that the maximum draw ratio of 14 times with an additive of 0.5 wt% CaCO3 are the optimal conditions for manufacturing high-performance marine fusion materials with various fineness (denier) with high strength and low elongation.

Changes in fermentation pattern and quality of Italian ryegrass (Lolium multiflorum Lam.) silage by wilting and inoculant treatments

  • Liu, Chang;Zhao, Guo Qiang;Wei, Sheng Nan;Kim, Hak Jin;Li, Yan Fen;Kim, Jong Geun
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.48-55
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of wilting and microbial inoculant treatment on the fermentation pattern and quality of Italian ryegrass silage. Methods: Italian ryegrass was harvested at heading stage and ensiled into vinyl bags (20 cm×30 cm) for 60d. Italian ryegrass was ensiled with 4 treatments (NWNA, no-wilting noadditive; NWA, no-wilting with additive; WNA, wilting no-additive; WA, wilting with additive) in 3 replications, wilting time was 5 hours and additives were treated with 106 cfu/g of Lactobacillus plantarum. The silages samples were collected at 1, 2, 3, 5, 10, 20, 30, 45, and 60 days after ensiling and analyzed for the ensiling quality and characteristics of fermentation patterns. Results: Wilting treatment resulted in lower crude protein and in vitro dry matter digestibility and there were no significant differences in acid detergent fiber (ADF), total digestible nutrient (TDN), water-soluble carbohydrate (WSC), ammonia content, and pH (p>0.05). However, wilting treatment resulted in higher ADF and neutral detergent fiber content of Italian ryegrass silage (p<0.05), and the WNA treatment showed the lowest TDN and in vitro dry matter digestibility. The pH of the silage was higher in the wilting group (WNA and WA) and lower in the additive treatment group. Meanwhile, the decrease in pH occurred sharply between the 3-5th day of storage. The ammonia nitrogen content was significantly lower in the additive treatment (p<0.05), and wilting had no effect. As fermentation progressed, the lactic and acetic acid contents were increased and showed the highest content at 30 days of storage. Conclusion: The wilting treatment did not significantly improve the silage fermentation, but the inoculant treatment improved the fermentation patterns and quality of the silage. So, inoculation before ensiling is recommended when preparing high quality of Italian ryegrass silage, and when wilting, it is recommended to combine inoculation for making high quality silage.

Effects of Solder Particle Size on Rheology and Printing Properties of Solder Paste (미세피치 접합용 솔더 페이스트의 솔더 분말 크기에 따른 레올로지 및 인쇄 특성 평가)

  • Jun, So-Yeon;Lee, Tae-Young;Park, So-Jeong;Lee, Jonghun;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2022
  • The wettability and rheological properties of solder paste with the size of the solder powder were evaluated. To formulate the solder paste, three types of solder powder were used: T4 (20~28 ㎛), T5 (15~25 ㎛), and T6 (5~15 ㎛). The viscosities of the T4, T5, and T6 solder pastes at 10 RPM were 155, 263, and 418 Pa·s, respectively. After 7 days, the viscosity of the T4 solder paste slightly increased by 2.6% and that of T5 was increased by 20.6%. The viscosity of the T6 solder paste after 7 days could not be measured due to high viscosity. The viscosity variation with solder particle size also affected on the printability of the solder. In the case of the T4 solder paste, printability, slump, bridging, and soldering properties were excellent. On the other hand, T5 showed slight dewetting and solder ball defects. Especially, T6, which the smallest powder size, showed poor printability and dewetting at the edge of solder.

Genetic Analysis of Quantitative Characters by Diallel Cross in Cotton (목화의 F2잡종집단에 대한 유전분석)

  • 정원복
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.213-218
    • /
    • 2002
  • The experiment was conducted to get basic information for cotton breeding program through four-variety diallel cross population. Additive, dominant, maternal, and reciprocal effect were observed significantly for days to maturity. Based on the Vr-Wr graphical analysis, the characters, number of bolls per plant, boll weight, seed and lint weight per boll, lint weight per boll, width of seed, 100-seed weight, days to flowering, and days to maturity were found to inherit incomplete dominance, and the characters of number of bolls per plant, width of seed, number of seeds per boll, and length of seed were assumed to inherit over dominance. The component of genetic variance analysis for boll weight, seed and lint weight per boll, lint weight per boll, number of seeds per boll, length of seed, and days to flowering showed that additive effects were higher than dominant effects. The narrow-sense heritability(h$_2$N) for boll weight, seed and lint weight per boll, lint weight per boll, days to flowering, and days to maturity showed high values as more than 43.19%. The estimate of broad-sense heritability(h$_2$B) value was higher than that of h$_2$N because of the low importance of dominance effects.

Effects and Application Cases of Injection Molds by using DED type Additive Manufacturing Process (DED방식의 적층가공을 통한 금형으로의 응용사례 및 효과)

  • Kim, Woosung;Hong, Myungpyo;Kim, Yanggon;Suh, Chang Hee;Lee, Jongwon;Lee, Sunghee;Sung, Ji Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.10-14
    • /
    • 2014
  • Laser aided Direct Metal Tooling(DMT) process is a kind of Additive Manufacturing processes (or 3D-Printing processes), which is developed for using various commercial steel powders such as P20, P21, SUS420, H13, D2 and other non-ferrous metal powders, aluminum alloys, titanium alloys, copper alloys and so on. The DMT process is a versatile process which can be applied to various fields like the mold industry, the medical industry, and the defense industry. Among of them, the application of DMT process to the mold industry is one of the most attractive and practical applications since the conformal cooling channel core of injection molds can be fabricated at the slightly expensive cost by using the hybrid fabrication method of DMT technology compared to the part fabricated with the machining technology. The main objectives of this study are to provide various characteristics of the parts made by DMT process compared to the same parts machined from bulk materials and prove the performance of the injection mold equipped with the conformal cooling channel core which is fabricated by the hybrid method of DMT process.

Micronized Cellulose as a Paper Additive and a Carrier for Papermaking Chemicals

  • Ozersky, Alexander
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.05a
    • /
    • pp.33-55
    • /
    • 2007
  • This article portrays special cellulose fibers, which are designed to be a functional additive and a carrier for papermaking chemicals. The first part of the presentation deals with the micronized $ARBOCEL^{(R)}$ cellulose fibers, which are used as a functional paper/paperboard additive. In particular as a bulk and speed aid. The detailed description of the micronized $ARBOCEL^{(R)}$ fibers, their function and effects on papermaking process and paper products are given. The second part of the study describes the concept of fiber-based papermaking chemicals. A new generation of fiber-based papermaking chemicals were presented for the first time at the PTS Pulp Technology Symposium 2005, and then several articles were published in various magazine in Asia ("Paper Asia"), the US ("Pulp & Paper"). and Europe ("Wochenblatt fuel Papierfabrikation"). The information generated quite an interest in the paper industry. Extensive studies of these papermaking additives have been made recently, new information obtained, and the compounds have gained more recognition in the industry. The company J. Rettenmaier und Soehne developed a group of fiber-based papermaking additives. They include combination of fibers with sizing agents, starch, fluorochemicals, minerals, biocides and some others. This article presents in-depth study of the AKD modified micronized cellulose as an example of the fiber-based papermaking chemicals concept. The material of the present paper is based mostly on the results of the pilot paper machine study at the Paper Research Institute PTS (Heidenau, Germany), and includes case studies from the mills, which used $ARBOCELPLUS^{(R)}-AKD$ compounds. It should be noted that the $ARBOCELPLUS^{(R)}$ compounds were not designed to replace traditional additives in paper industry. They should rather be used in those areas, where application of "normal" chemicals is especially problematic

  • PDF

Preparation of Biodegradable PHBV Devices Containing Gentamicin Sulfate (PHBV를 이용한 황산겐타마이신 서방성 제형의 제조와 방출거동)

  • 최학수;김상욱;윤덕일;강길선;이종문;김용식;이해방
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.334-342
    • /
    • 2001
  • Gentamicin sulfate (GS)-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) devices were prepared for controlled-release of antibiotics. In this study, the effects of thickness, hydroxyvalerate (HV) content, initial drug-loading ratio, and additive content on the release profile have been investigated. The morphology of devices was examined with scanning electron microscope (SEM) before and after in vitro release; their highly porous surface and cross-sectional were observed. It could be suggested that device would be affected by the packing of the HV and additive content, which would depend on their structure. A high performance liquid chromatography (HPLC) was used to detect and quantify the release of GS from the device. The drug release from all the devices showed biphasic release patterns, and some matrices released the incorporated antibiotic throughout 30 days with a near zero-order release rate. The release patterns were shown to be changed by altering the thickness, copolymer ratio, and additive content.

  • PDF

Through-Silicon-Via Filling Process Using Cu Electrodeposition (구리 전해 도금을 이용한 실리콘 관통 비아 채움 공정)

  • Kim, Hoe Chul;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.723-733
    • /
    • 2016
  • Intensive researches have been focused on the 3-dimensional packaging technology using through silicon via (TSV) to overcome the limitation in Cu interconnection scaling. Void-free filling of TSV by the Cu electrodeposition is required for the fabrication of reliable electronic devices. It is generally known that sufficient inhibition on the top and the sidewall of TSV, accompanying the selective Cu deposition on the bottom, enables the void-free bottom-up filling. Organic additives contained in the electrolyte locally determine the deposition rate of Cu inside the TSV. Investigation on the additive chemistry is essential for understanding the filling mechanisms of TSV based on the effects of additives in the Cu electrodeposition process. In this review, we introduce various filling mechanisms suggested by analyzing the additives effect, research on the three-additive system containing new levelers synthesized to increase efficiency of the filling process, and methods to improve the filling performance by modifying the functional groups of the additives or deposition mode.

Mechanical Properties of the Pressureless Sintered $Al_2O_3-SiC$ Composite(1) : Dispersion Effects of SiC Powder (상압소결 $Al_2O_3-SiC$계 소결체의 기계적 성질 (I) : SiC분말의 분산효과)

  • 이홍림;김경수;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.231-236
    • /
    • 1988
  • In order to investigate the effect of second phase on $Al_2O_3$ matrix, SiC particles were dispersed in $Al_2O_3$ matrix as a second phase over the content range of 5 vol.% to 20 vol.%. To this mixture, $Y_2O_3$ or $TiO_2$ powders were added as a sintering additive before isostatically pressing and pressurelessly sintering at 180$0^{\circ}C$ for 90 min in $N_2$ atmosphere. With increasing SiC content, relative densities of composites were decreased but mechanical properties of composites were improvjed. In the case of adding $Y_2O_3$ as a sintering additive, maximum values of flexural strength, hardness and fracture toughness were 525 MPa, 17.1 GPa, 4.1 MPa.m1/2 respectively. In the case of adding X$TiO_2$ as a sintering additive, maximum values of flexural strength, hardness were 285 MPa, 12.1 GPa respectively. Improved mechanical properties were found to be the results of grain growth control of $Al_2O_3$ matrix and crack deflection by the second phase SiC particles.

  • PDF