• Title/Summary/Keyword: added mass of water

Search Result 197, Processing Time 0.027 seconds

Vibration Analysis of Rotary Specimen Rack (RSR) in a Still Fluid and Stress Analysis of Clamp Part of RSR (정지 유체 내에 있는 회전시료조사대의 진동해석 및 지지부의 응력해석)

  • 김성균;이동규;이근우;정운수;박진호
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • In this paper, in-air and in-water vibration characteristics of Rotary Specimen Rack (RSR) are estimated through 3D finite element modeling by using ANSYS software. Added mass is calculated by using Blevins' equation. To confirm the reasonability of the results presented in this study, obtained results are compared to those of using a theoretical equation. It is confirmed that in-water natural frequencies of the RSR are lower than in-air ones due to the added mass effect of the fluid. Also, to design clamp which needs to fix RSR, Von-Mises stress and displacement of RSR to clamp pressure are calculated.

Conservation for the Seismic Models of Intake Tower with Nonlinear Behaviors and Fluid Structure Interaction (비선형거동과 구조물유체상호작용을 고려한 취수탑 내진모델의 보수성평가)

  • Lee, Gye-Hee;Lee, Myoung-Kyu;Hong, Kwan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, series of nonlinear seismic analysis were performed on a reinforced concrete intake tower surrounded by water. To consider the fluid effect around the structure, analysis models were composed using an added mass and CEL approach. At this time, the implicit method was used for the added mass model, and the explicit method was used for the fluid structure interaction model. The input motions were scaled to correspond to 500, 1000, and 2400 years return period of the same artificial earthquake. To estimate the counteractivity of the fluid coupled model, models without fluid effect were constructed and used as a reference. The material models of concrete and reinforcement were selected to consider the nonlinear behavior after yielding, and analysis were performed by ABAQUS. As results, in the acceleration response spectrum of the structure, it was found that the influence of the surrounding fluid reducing the peak frequency and magnitude corresponding to the fundamental frequency of the structure. However, the added mass model did not affect the peak value corresponding to the higher mode. The sectional moments were increased significantly in the case of the added mass model than those of the reference model. Especially, this amplification occurred largely for a small-sized earthquake response in which linear behavior is dominant. In the fluid structure interaction model, the sectional moment with a low frequency component amplifies compared to that of the reference model, but the sectional moment with a high requency component was not amplified. Based in these results, it was evaluated that the counteractivity of the additive mass model was greater than that of the fluid structure interaction model.

Hydrodynamic Forces on a Two-dimensional Cylinder in Shallow Water (천수역에 놓인 2차원 주상체에 수평방향으로 작용하는 동유체력에 관한 고찰)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 1986
  • An analysis is made of hydrodynamic forces acting horizontally on a two-dimensional cylinder, when it is exposed to incident waves and consequently undergoes a swaying motion in shallow water. Applying the method of matched asymptotic expansions the added mass, wave damping and the wave exciting force are obtained in terms of the difference in potential across the cylinder in a simple manner. The potential jump is related to the so-called blockage coefficient which is determined purely from geometry. It is found that the wave damping coefficient can not exceed the blockage coefficient.

  • PDF

Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures by Natural Ores (자연광석을 이용한 염소계 지방족 탄화수소 혼합물 변환 특성)

  • Son, Bong-han;Kim, Nam-hee;Hong, Kwang-pyo;Yun, Jun-ki;Lee, Chae-young;Kim, Young;Kwon, Soo-youl
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.712-722
    • /
    • 2007
  • This study screened three natural ores (iron, mangenase, and zinc), two types of slags, and two elemental metals (elemental iron and zinc) to evaluate transformation characteristics of CAH mixtures [e.g. Carbontetrachloride (CT), 1,1,1-Trichloroethane (1,1,1-TCA), and Perchloroethene (PCE)]. To select an effective metal medium to treat the CAH mixtures, we measured transformation capacities (CAH mass ultimately transformed/mass of metal added) and the degree of dechlorination. We also considered economical efficiency of the metal media by comparing the value, CAH mass ultimately transformed divided by the price of metal medium added. A simplified mathematical model adapting CAH transformation capacity, first-order transformation kinetics, and available mass of metal transforming CAH was developed and used for estimating CAH transformation rate coefficient and longevity of the metal medium. CAH transformation capacity for elemental iron and elemental zinc were 4258~7129 and $4215{\sim}6330{\mu}g\;CAH\;transformed/g$ metal added, respectively, which are a factor of 80~200 higher than slags and natural ores. They also showed a factor of 1.1 to 2.2 greater degree of dechlorination than the others. Among natural ores and slags, Zinc ore showed the highest transformation capacity, $47{\sim}53{\mu}g\;CAH\;transformed/g$ metal added. Although zinc ore have smaller transformation capacity than elemental metals, economical efficiency of zinc ore is a factor of 10~20 greater than elemental metals tested. Consequently, zinc ore would be more economical medium than the others tested in this study. We estimated the pseudo first-order transformation rate of zinc ore was in the order of CT > 1,1,1-TCA > PCE.

Natural Vibration Characteristics of Cantilever Plate Partially Submerged into Water (수중에 부분 몰수된 외팔보의 고유진동 특성)

  • Kwak, Moon K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.229-230
    • /
    • 2012
  • The free flexural vibration of a cantilever plate partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The virtual mass matrix is derived by solving the boundary-value problem related to the fluid motion using elliptical coordinates. The introduction of the elliptical coordinates naturally leads to the use of the Mathieu function. Hence, the virtual mass matrix which reflects the effect of the fluid on the natural vibration characteristics is expressed in analytical form in terms of the Mathieu functions. The virtual mass matrix is then combined with the dynamic model of a thin rectangular plate obtained by using the Rayleigh-Ritz method. This combination is used to analyze the natural vibration characteristics of a partially submerged cantilever plate qualitatively. Also, the non-dimensionalized added virtual mass incremental factors for a partially submerged cantilever plate are presented to facilitate the easy estimation of natural frequencies of a partially submerged cantilever plate. The numerical results validate the proposed approach.

  • PDF

An Experimental Study on the Elastic Vibration of Plates in Contact with Water (평판(平板)의 접수진동(接水振動)에 관한 실험적(實驗的) 연구(硏究))

  • K.C.,Kim;J.S.,Kim;H.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 1979
  • The authors had done theoretical analysis of the vibration of rectangular elastic plates in contact with water. In this analysis, using the elliptic cylindrical coordinate system, they investigated the effects of mass density ratios, chord-length to thickness ratios, aspect ratios, boundary conditions and mode shapes on the added mass of plates. The results are reported in papers quoted as the reference [4] and [5] of this paper. In this report the results of experiments conducted to verify the above theoretical analysis are presented. It shows that numerical results derived from the theoretical analysis are generally in good agreement with the experimental results.

  • PDF

Changes in Dynamic Characteristics of Monopile-Type Offshore Structures According to Tidal Environments and Boundary Conditions (다양한 조류 환경 및 경계 조건에 따른 모노파일형 해상구조물의 동특성 변화 분석)

  • Jung, Byung-Jin;Park, Jong-Woong;Yi, Jin-Hak;Park, Jin-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • Because a change in the natural frequencies of a structure indicates structural health problems, monitoring the natural frequencies crucial. Long-term measurement for the Uldolmok tidal current power plant structure has shown that its natural frequencies fluctuate with a constant cycle twice a day. In this study, lab-scale tests to investigate the causes of these natural frequency fluctuations were carried out in a circulating water channel. Three independent variables in the tests that could affect the fluctuation of the natural frequencies were the water level, current velocity, and boundary condition between the specimen and the bottom of the circulating water channel. The experimental results were verified with numerical ones using ABAQUS. It was found that the fluctuation of the natural frequencies was governed by a decrease in stiffness due to the boundary condition much more than the effect of added mass. In addition, it was found that the natural frequency would decrease with an increase in the tidal current velocity because of its nonlinearity when the boundary condition was severely deteriorated due to damage.

Analysis of added resistance of a ship advancing in waves (파랑중에서 전진하는 선박의 부가저항 해석)

  • 이호영;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • This paper presents theoretical formulations and numerical computations for predicting first-and second-order hydrodynamic force on a ship advvancing in waves. The theoretical formulation leads to linearized radiation and diffration problems solving the three-dimensional Green function integral equations over the mean wetted body surface. Green function representing a translating and pulsating source potantial for infinite water depth is used. In order to solve integral equations for three dimentional flows using Green function efficiently, the Hoff's method is adopted for numerical calculation of the Green function. Based on the first-order solution, the mean seconder-order forces and moments are obtained by directly integrating second-order pressure over the mean wetted body surface. The calculated items are carried out for analyzing the seakeeping characteristics of Series 60. The calculated items are hydrodynamic coefficients, wave exciting forces, frequency response functions and addd resistance in waves.

  • PDF

Remedy for ill-posedness and mass conservation error of 1D incompressible two-fluid model with artificial viscosities

  • Byoung Jae Kim;Seung Wook Lee;Kyung Doo Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4322-4328
    • /
    • 2022
  • The two-fluid model is widely used to describe two-phase flows in complex systems such as nuclear reactors. Although the two-phase flow was successfully simulated, the standard two-fluid model suffers from an ill-posed nature. There are several remedies for the ill-posedness of the one-dimensional (1D) two-fluid model; among those, artificial viscosity is the focus of this study. Some previous works added artificial diffusion terms to both mass and momentum equations to render the two-fluid model well-posed and demonstrated that this method provided a numerically converging model. However, they did not consider mass conservation, which is crucial for analyzing a closed reactor system. In fact, the total mass is not conserved in the previous models. This study improves the artificial viscosity model such that the 1D incompressible two-fluid model is well-posed, and the total mass is conserved. The water faucet and Kelvin-Helmholtz instability flows were simulated to test the effect of the proposed artificial viscosity model. The results indicate that the proposed artificial viscosity model effectively remedies the ill-posedness of the two-fluid model while maintaining a negligible total mass error.

Transverse Vibration of Rectangular Plates Having an Inner Cutout in Water (유공직사각형평판(有孔直四角形平板)의 접수진동(接水振動))

  • H.S.,Lee;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 1984
  • This paper is concerned with the experimental investigation of transverse vibration characteristics in water of rectangular plates having an inner free cutout. Systematic experiments are carried out to investigate effects of the surrounding water on the added mass and the natural frequency of the plates due to the changes of the aspect ratio, hole size and eccentricity. The main subject is the clamped rectangular plate with a circular hole. For the purpose of comparative evaluations, some other common-type boundary conditions and hole shapes such as ellipses and rectangles are also investigated. Some of the results obtain are as follows; 1) For each given aspect ratio of the plate, there is a hole area ratio which gives a minimum value of the nondimensional frequency parameter for each mode. The hole area ratio increases as the order number of the mode increases. 2) The nondimensinal mass-increment parameter decreases as the aspect ration or the order number of the mode increases. For each given aspect ratio, the parameter the fundamental mode decreases monotonically as the hole area ratio increase. In cases of the second and higher order modes, however, each mode has a hole area ratio which gives a maximum value of the parameter for each aspect ratio more then 2/3. 3) Comparing elliptic holes with rectangular ones with same hole area ratio, nondimensional frequency parameters are almost same for each given ratio of the shorter axises to the longer one. 4) The influences of difference in boundary condion on nondimensional frequency parameters in water are similar to those in air.

  • PDF