• Title/Summary/Keyword: added mass of water

Search Result 197, Processing Time 0.033 seconds

A Study on Vibration Characteristics in Water Tank with Multi-panels (복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.

Vibration Analysis of an Cantilever Beam in Partially Liquid-Filled Cylindrical Pipe (부분적으로 유체가 채워진 원통형 관내의 외팔보 진동해석)

  • 권대규;유계형;방두열;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1073-1078
    • /
    • 2003
  • This paper presents the vibration characteristics of a cantilever beam in contact with a fluid using a PZT actuator and PVDF film. dynamic behaviors of a flexible beam-water interaction system are examined. The effect of the liquid level on free vibration of the composite beam in a partially liquid-filled circular cylinder is investigated. The coupled system is subject to an undisturbed boundary condition un the fluid domain. In the vibration analysis of a wetted beam. the decoupled analyses between beam and fluid have been conventionally employed by considering first the composite beam vibration in the all and secondly Performing the correction taking account for surrounding fluid effects. That is, this investigation was to look at how natural frequencies, mode shapes. and damping are affected by liquid level variations. The signals from the sensor according to the applied input voltage are digitalized and filtered in order to obtain the dynamic characteristics of the composite beam in contact with fluid. It was found that the coupled natural frequencies decreased with the fluid level for the identical composite beam due to added mass effect. In case of the free-free boundary condition, the natural frequency gently decreased at fluid water level between 20% and 80% in the first tending mode and we found out the bends of stair shape for added mass effect of the fluid.

  • PDF

Flexural Vibration of Stiffened Plates in Contact with Water (보강판(補剛板)의 접수진동(接水振動))

  • K.C.,Kim;K.P.,Rhee;H.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.11-16
    • /
    • 1980
  • For vibration analysis of stiffened plates the orthotropic plate analogy is commonly accepted. As to stiffened plates in contact with water, however, there is still much uncertainty in estimation of the added mass because of the lack of direct methods. The authors, considering that for added mass of plates there are many reliable data derived theoretically or experimentally available, suggest a method to estimate the added mass of a stiffened plate by combining the mass increase factor, $\beta$, of an equivalent orthotropic plate and the correction factor, $\kappa$, for the effects of stiffeners. The latter is to be derived from systematic experimental investigations. Then, the natural frequency in water, f', can be calculated from that in air, f, by the equation $f'=f/\sqrt{1+\kappa\beta}$. To investigate practical applicability of this method, a systematic experiment was carried out with five uniaxially stiffened plates. Each of them had a plate of same size, $600mm{\times}600mm{\times}3.2mm$, but stiffeners of different size in the web-depth, 41.6mm, 51.2mm or 66.8mm and of different spacing 75mm, 100mm, or 150mm. Natural frequencies were measured under simply supported-edge conditions in both air and water, and corresponding $\kappa$ values derived. In spite of wide variations of web-depth and spcae of stiffeners, the experimental results show that the diversity of $\kappa$ values is not remarkable; mean values of $\kappa$ are 1.31 with standard deviation of 0.025 for the first modes and 1.27 with that 0.077 for the second modes. Hence, the authors concluded that the above $\kappa$ values can be used generally for the cases of uniaxially stiffened plates both sides of which contact with water, and that $\kappa$ values of general use for the cases of cross-stiffened plates may also be obtainable from similar experiments.

  • PDF

A Study on the Dynamic Response of Cylindrical Wind Turbine Tower Considering Added Mass (부가수질량을 고려한 실린더형 풍력발전기타워의 동적응답연구)

  • Son, Choong-Yul;Lee, Kang-Su;Lee, Jung-Tak
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.348-358
    • /
    • 2008
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures is possibly only when the fluid-structures is understood, as the whole or part of the structure is in contact with water. Through the comparision between the experimental result and the finite element analysis result for a simple cylindrical model, it was verified that an added mass effects on the cylindrical structure. Using the commercial FEA program ANSYS(v.11.0), underwater added mass was superposed on the mass matrix of the structure. A frequency response analysis of forced vibration in the frequency considered the dynamic load was also performed. It was proposed to find the several important modes of resonance peak for these fixed cylindrical type structures. Furthermore, it is expected that the analysis method and the data in this study can be applied to a dynamic structural design and dynamic performance evaluation for the ground and marine purpose of power generator by wind.

  • PDF

Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition (경계조건과 두께 변화에 따른 사각탱크의 진동 특성)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

Free Vibration Analysis of Perforated Rectangular Plates Submerged in Fluid (유체에 잠긴 다공 직사각평판의 고유진동 해석)

  • 유계형;권대규;정경훈;이성철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • This paper presented an experimental modal analysis of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the Rayleigh-Ritz method and compared with the experimental results. Good agreement was obtained between the analytical solution and experimental result. The experimental results in water showed that the mode shapes are not sensitive to the depth of submergence. The natural frequencies were shown to decrease drastically once the perforated plates come in contact with water. However, the natural frequencies decrease with the depth of submergence until a certain depth is reached, and become the asymptotic values beyond this depth of submergence. The depth of submergence did not affect the damping ratio greatly.

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

A Sliding Mode Control of Robot Manipulator Operated Under the Sea (해저작업 로봇 매니퓰레이터의 슬라이딩 모드 제어)

  • Park, H.S.;Park, H.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.106-113
    • /
    • 1996
  • This paper presents a modeling of undersea robot manipulators and a control scheme appropriate for manipulating the manipulators working under the unstrcuctured sea water environment. Under the sea, the added mass and added moment of inertia, buoyancy, and drag forces should be considered in modeling the dynamics of the robot manipulators. Due to the complexity of them, the desired dynamics of manipulators can not be accomplished by the conventional control schemes. Hence, a sliding mode control is applied to control the modeling error.

  • PDF

Water Wave Interactions with Array of Floating Circular Cylinders (부유식 원형 실린더 배열에 의한 파 상호작용)

  • Park, Min-Su;Jeong, Youn-Ju;You, Young-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.51-62
    • /
    • 2013
  • The water wave interactions on any three-dimensional structure of arbitrary geometry can be calculated numerically through the use of source distribution or Green's function techniques. However, such a method can be computationally expensive. In the present study, the water wave interactions in floating circular cylinder arrays were investigated numerically using the eigenfunction expansion method with the three- dimensional potential theory to reduce the computational expense. The wave excitation force, added mass coefficient, radiation damping coefficient, and wave run-up are presented with the water wave interactions in an array of 5 or 9 cylinders. The effects of the number of cylinders and the spacing between them are examined because the water wave interactions in floating circular cylinder arrays are significantly dependent upon these.

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.2
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF