• Title/Summary/Keyword: adaptive tracking filter

Search Result 149, Processing Time 0.033 seconds

A practical adaptive tracking filter for a maneuvering target (시선좌표계에서의 분리추적필터를 이용한 개선된 입력추정기법)

  • 성태경;황익호;이장규;이양원;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.424-429
    • /
    • 1992
  • A practical adaptive tracking filter for a maneuvering target is proposed in this paper by combining a modified input estimation technique with pseudo-residuals and a decoupled tracking filter in line-of-sight Cartesian coordinate system. Since the adaptive tracking filter has decoupled structure and computes maneuver input estimates for each axis separately, it requires much less computations compared with the coventional tracking filter with MIE technique without degrading performance. Also, since pseudo-measurement noises in line-of-sight Cartesian coordinate system are much less correlated compared with those of inertial Cartesian coordinate system, the proposed tracking filter produces less false alarms or miss detections to improve the performance.

  • PDF

A Tracking Filter Design of the Radar Beacon System for Automatic Take-off and Landing of Unmanned Aerial Vehicle (무인항공기 자동이착륙을 위한 레이다 비콘 시스템의 추적필터 설계)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This paper presents a tracking filter of radar beacon system (RBS) for automatic takeoff and landing of an unmanned aerial vehicle. The proposed tracking filter is designed as the decoupled tracking filter to reduce the computational burden. Also, an adaptive estimation method of the measurement error covariance is proposed to provide an improved tracking performance compared to the conventional decoupled tracking filter whenever the accuracy of RBS observations is degraded. 100 times Monte Carlo runs performed to analyze the performance of the proposed tracking filter in case of normal operation and degraded operations, respectively. The simulation results show that the proposed tracking filter provides the improved tracking accuracy in comparison with the conventional decoupled tracking filter.

Carrier Tracking Loop using the Adaptive Two-Stage Kalman Filter for High Dynamic Situations

  • Kim, Kwang-Hoon;Jee, Gyu-In;Song, Jong-Hwa
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.948-953
    • /
    • 2008
  • In high dynamic situations, the GPS carrier tracking loop requires a wide bandwidth to track a carrier signal because the Doppler frequency changes more rapidly with time. However, a wide bandwidth allows noises within the bandwidth of the tracking loop to pass through the loop filter. As these noises are used in the numerical controlled oscillator(NCO), the carrier tracking loop of a GPS receiver shows a degraded performance in high dynamic situations. To solve this problem, an adaptive two-stage Kalman filter, which offers the NCO a less noisy phase error, can be used. This filter is based on a carrier phase dynamic model and can adapt to an incomplete dynamic model and a quickly changed Doppler frequency. The performance of the proposed tracking loop is verified by several simulations.

Performance Analysis of Adaptive Extended Kalman Filter in Tracking Radar (추적 레이더에서 적응형 확장 칼만 필터의 성능 분석)

  • Song, Seungeon;Shin, Han-Seop;Kim, Dae-Oh;Ko, Seokjun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.223-229
    • /
    • 2017
  • An angle error is a factor obstructing to track accurate position in tracking radars. And the noise incurring the angle error can be divided as follows; thermal noise and glint. In general, Extended Kalman filter used in tracking radars is designed with considering thermal noise only. The Extended Klaman filter uses a fixed measurement error covariance when updating an estimate state by using ahead state and measurement. But, a noise power varies according to the range. Therefore we purposes the adaptive Kalman filter which changes the measurement noise covariance according to the range. In this paper, we compare the performance of the Extended Kalman filter and the proposed adaptive Kalman filter by considering KSLV-I (Korean Satellite Launch Vehicles).

Comparison of the Applicability of Bayesian Filters for System Identification of Sudden Structural Damage (급격한 구조손상탐지를 위한 베이지안 필터 적용가능성 비교 검토 연구)

  • Se-Hyeok Lee;Minkyu Kim;Sang-ri Yi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.283-293
    • /
    • 2024
  • In this study, advanced unscented Kalman filter (UKF) and particle filter (PF) implementations are introduced and applied to perform system identification (SI) for sudden structural damage induced by seismic loading. These two methods are then compared to validate their applicability to SI tasks. For this validation, the Bouc- Wen model is used to simulate the nonlinear shear-building response, and an adaptive rule (i.e., an adaptive tracking method) is applied to the two filter methods to improve their tracking performance during sudden changes in system properties. When the original UKF and PF are applied to an earthquake scenario, both methods fail to estimate the damage initiation time and post-damage parameter values. After applying the adaptive tracking method, it is found for both methods that although the occurrence time is identified, the estimation of the damage state is still not accurate. To improve the accuracy, an adjusted adaptive tracking method is applied, and the two methods then derive accurate estimates. Finally, when considering the computation time, UKF is promoted as a better choice for practical applications, provided that a proper adaptive tracking method is implemented.

Animal Tracking in Infrared Video based on Adaptive GMOF and Kalman Filter

  • Pham, Van Khien;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • The major problems of recent object tracking methods are related to the inefficient detection of moving objects due to occlusions, noisy background and inconsistent body motion. This paper presents a robust method for the detection and tracking of a moving in infrared animal videos. The tracking system is based on adaptive optical flow generation, Gaussian mixture and Kalman filtering. The adaptive Gaussian model of optical flow (GMOF) is used to extract foreground and noises are removed based on the object motion. Kalman filter enables the prediction of the object position in the presence of partial occlusions, and changes the size of the animal detected automatically along the image sequence. The presented method is evaluated in various environments of unstable background because of winds, and illuminations changes. The results show that our approach is more robust to background noises and performs better than previous methods.

Design of Fuzzy Adaptive IIR Filter in Direct Form (직접형 퍼지 적응 IIR 필터의 설계)

  • 유근택;배현덕
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.370-378
    • /
    • 2002
  • Fuzzy inference which combines numerical data and linguistic data has been used to design adaptive filter algorithms. In adaptive IIR filter design, the fuzzy prefilter is taken account, and applied to both direct and lattice structure. As for the fuzzy inference of the fuzzy filter, the Sugeno's method is employed. As membership functions and inference rules are recursively generated through neural network, the accuracy can be improved. The proposed adaptive algorithm, adaptive IIR filter with fuzzy prefilter, has been applied to adaptive system identification for the purposed of performance test. The evaluations have been carried out with viewpoints of convergence property and tracking properties of the parameter estimation. As a result, the faster convergence and the better coefficients tracking performance than those of the conventional algorithm are shown in case of direct structures.

Adaptive MCMC-Based Particle Filter for Real-Time Multi-Face Tracking on Mobile Platforms

  • Na, In Seop;Le, Ha;Kim, Soo Hyung
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.17-25
    • /
    • 2014
  • In this paper, we describe an adaptive Markov chain Monte Carlo-based particle filter that effectively addresses real-time multi-face tracking on mobile platforms. Because traditional approaches based on a particle filter require an enormous number of particles, the processing time is high. This is a serious issue, especially on low performance devices such as mobile phones. To resolve this problem, we developed a tracker that includes a more sophisticated likelihood model to reduce the number of particles and maintain the identity of the tracked faces. In our proposed tracker, the number of particles is adjusted during the sampling process using an adaptive sampling scheme. The adaptive sampling scheme is designed based on the average acceptance ratio of sampled particles of each face. Moreover, a likelihood model based on color information is combined with corner features to improve the accuracy of the sample measurement. The proposed tracker applied on various videos confirmed a significant decrease in processing time compared to traditional approaches.