• Title/Summary/Keyword: adaptive threshold detector

Search Result 22, Processing Time 0.03 seconds

Performance Analysis of Pulse Positioning Using Adaptive Threshold Detector (ATD)

  • Chang, Jae Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This paper describes the measurement of pulse positioning (input time) to calculate a time of arrival (TOA) that takes from transmitting a signal from the target of multilateration (MLAT) system to receiving the signal at the receiver. In this regard, this paper analyzes performances of simple threshold method and level adjust system (LAS) method, which is one of the adaptive threshold detector (ATD) methods, among many methods to calculate pulse positioning of signal received at the receiver. To this end, Cramer-rao lower bound (CRLB) with regard to pulse positioning, which was measured when signals transmitted from a transponder mounted at the target were received at the receiver, was induced and then deviation sizes with regard to pulse positioning, which was measured with simple threshold and LAS methods through MATLAB simulations, were compared. Next, problems occurring according to a difference in amplitude of signals inputted to each receiver are described when pulse positioning is measured at multiple receivers located at a different distance from the target as is the case in the MLAT system. Furthermore, LAS method to resolve the problems is explained. Lastly, this study analyzes whether a pulse positioning error occurring due to the signal noise satisfies the requirement (6 nsec. or lower) recommended for the MLAT system when using these two methods.

Improved Energy Detector using Adaptive Thresholds in Cognitive Radio System (인지 무선 시스템에서 적응형 임계치를 적용한 개선된 에너지 검출기)

  • Kim, Jong-Ho;Hwang, Seung-Hoon;Oh, Min-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.949-955
    • /
    • 2008
  • In this paper, we propose the improved energy detector using adaptive thresholds in cognitive radio system, in order to compensate the weak points of the existing energy detector in the distorted communication environment. In addition, by investigating the several parameters we analyze its performance. The numerical results show the proposed method may get the performance gain, when the mobile speed is slow (3 km/h) as well as the false alarm probability is low ($P_f=10^{-1}$).

Pulse Position Determination using Adaptive Threshold Detector (Adaptive Threshold Detector를 이용한 펄스 위치 계산)

  • Chagn, Jae-won;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • MLAT which is an independent cooperative surveillance system is applied to increase the positon resoultin of secondary survelliance radar. MLAT uses the hyperboic or hyperboloid position mesurement algorithm. Central processing unit of MLAT calculates target position using time difference of arrival (TDOA) which can be solved from time of arrival (TOA) information of each receivers (at least 4 receivers). To increase position resolution of MLAT which use TDOA, TOA which is transfer time from tranmitter to receiver shold be calculated with precision time resolution in receiver. This paper explained the MLAT system briefly and explained ATD which is one of means of calcuating pulse position. ATD is applied to solve the deviation of pulse position due to different amplitude of signals in mulitiple receivers. In this paper, to analysis the performance of ATD, the simulation result of LAS and CDS was compared with the simulation result of basic threshold method.

Adaptive Threshold Detection Using Expectation-Maximization Algorithm for Multi-Level Holographic Data Storage (멀티레벨 홀로그래픽 저장장치를 위한 적응 EM 알고리즘)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.809-814
    • /
    • 2012
  • We propose an adaptive threshold detector algorithm for multi-level holographic data storage based on the expectation-maximization (EM) method. In this paper, the signal intensities that are passed through the four-level holographic channel are modeled as a four Gaussian mixture with unknown DC offsets and the threshold levels are estimated based on the maximum likelihood criterion. We compare the bit error rate (BER) performance of the proposed algorithm with the non-adaptive threshold detection algorithm for various levels of DC offset and misalignments. Our proposed algorithm shows consistently acceptable performance when the DC offset variance is fixed or the misalignments are lower than 20%. When the DC offset varies with each page, the BER of the proposed method is acceptable when the misalignments are lower than 10% and DC offset variance is 0.001.

Adaptive Cooperative Spectrum Sensing Based on SNR Estimation in Cognitive Radio Networks

  • Ni, Shuiping;Chang, Huigang;Xu, Yuping
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.604-615
    • /
    • 2019
  • Single-user spectrum sensing is susceptible to multipath effects, shadow effects, hidden terminals and other unfavorable factors, leading to misjudgment of perceived results. In order to increase the detection accuracy and reduce spectrum sensing cost, we propose an adaptive cooperative sensing strategy based on an estimated signal-to-noise ratio (SNR). Which can adaptive select different sensing strategy during the local sensing phase. When the estimated SNR is higher than the selection threshold, adaptive double threshold energy detector (ED) is implemented, otherwise cyclostationary feature detector is performed. Due to the fact that only a better sensing strategy is implemented in a period, the detection accuracy is improved under the condition of low SNR with low complexity. The local sensing node transmits the perceived results through the control channel to the fusion center (FC), and uses voting rule to make the hard decision. Thus the transmission bandwidth is effectively saved. Simulation results show that the proposed scheme can effectively improve the system detection probability, shorten the average sensing time, and has better robustness without largely increasing the costs of sensing system.

Development of a Stress ECG Analysis Algorithm Using Wavelet Transform (웨이브렛 변환을 이용한 스트레스 심전도 분석 알고리즘의 개발)

  • 이경중;박광리
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.269-278
    • /
    • 1998
  • This paper describes a development of efficient stress ECG signal analysis algorithm. The algorithm consists of wavelet adaptive filter(WAF), QRS detector and ST segment detector. The WAF consists of a wavelet transform and an adaptive filter. The wavelet transform decomposed the ECG signal into seven levels using wavelet function for each high frequency bank and low frequency bank. The adaptive filter used the signal of the seventh lowest frequency band among the wavelet transformed signals as primary input. For detection of QRS complex, we made summed signals that are composed of high frequency bands including frequency component of QRS complex and applied the adaptive threshold method changing the amplitude of threshold according to RR interval. For evaluation of the performance of the WAF, we used two baseline wandering elimination filters including a standard filter and a general adaptive filter. WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of results of QRS complex detection, we compared our algorithm with existing algorithms using MIT/BIH database. Our algorithm using summed signals showed the accuracy of 99.67% and the higher performance of QRS detection than existing algorithms. Also, we used European ST-T database and patient data to evaluate measurement of the ST segment and could measure the ST segment adaptively according to change of heart rate.

  • PDF

A Fast Adaptive Corner Detection Based on Curvature Scale Space

  • Nguyen, Van Hau;Woo, Kyung-Haeng;Choi, Won-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.622-631
    • /
    • 2011
  • Corners play an important role in describing object features for pattern recognition and identification. This paper proposed a fast and adaptive corner detector in both coarse and fine scale, followed by the framework of the curvature scale space (CSS). An adaptive curvature threshold and evaluating of angles of corner candidates are added to original CSS to remove round corners and false corners in the detecting process. The efficiency of proposed method is compared to other popular detectors in both accuracy criteria, stability and time consuming. Results illustrate that the proposed method performs extremely surpass in both areas.

Design of Stack Monitoring System with Improved Performance (성능이 향상된 Stack Monitoring System의 설계)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seong-Won;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.299-302
    • /
    • 2016
  • In this paper, we designed the stack monitoring system with improved performance. To block the incoming pulse noise to the amplifier, shield and the power supply impedance are reduced and the power circuit is isolated. The control unit is developed with variable high voltage, adaptive gain, offset and threshold in order to match the scintillation detector characteristic to the apparatus. 300-1500V variable high voltage power circuit is configured applicable to various scintillation detector. Stack monitoring system with improved performance guarantee the efficiency and the reliability by considering the characteristic of various scintillation detector. Developed stack monitoring system is evaluated with certified testing equipment and shows excellent performance with respect to the uncertainty of the sensor test results.

Automatic Coarticulation Detection for Continuous Sign Language Recognition (연속된 수화 인식을 위한 자동화된 Coarticulation 검출)

  • Yang, Hee-Deok;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.82-91
    • /
    • 2009
  • Sign language spotting is the task of detecting and recognizing the signs in a signed utterance. The difficulty of sign language spotting is that the occurrences of signs vary in both motion and shape. Moreover, the signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and non-sign patterns(which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing a threshold model in a conditional random field(CRF) model is proposed. The proposed model performs an adaptive threshold for distinguishing between signs in the vocabulary and non-sign patterns. A hand appearance-based sign verification method, a short-sign detector, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experimental results show that the proposed method can detect signs from continuous data with an 88% spotting rate and can recognize signs from isolated data with a 94% recognition rate, versus 74% and 90% respectively for CRFs without a threshold model, short-sign detector, subsign reasoning, and hand appearance-based sign verification.

An Adaptive Digital Filter for Target Signal Enhancement in Active Sonar (능동 소나에서 표적 신호 향상을 위한 적응 디지털 필터)

  • 성하종;김기만;이충용;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.3-7
    • /
    • 2001
  • In active sonar system using CW signal, when the noise included reverberation has not the white characteristics, the CFAR detector estimates high threshold. Because of this reason it cannot detect targets and not resolve the closely spaced multiple targets. In order to solve these problems, we propose an adaptive reverberation rejection filter The proposed filter is composed of an adaptive filter and a fixed filter with its coefficients. To study the performance of the proposed adaptive reverberation rejection filter, various experiments have been performed under In moving active sonar environments. As a results, the proposed method has the improved performance than the previous methods.

  • PDF