An active research area in computer vision, stereo matching is aimed at obtaining three-dimensional (3D) information from a stereo image pair captured by a stereo camera. To extract accurate 3D information, a number of studies have examined stereo matching algorithms that employ adaptive support weight. Among them, the adaptive census transform (ACT) algorithm has yielded a relatively strong matching capability. The drawbacks of the ACT, however, are that it produces low matching accuracy at the border of an object and is vulnerable to noise. To mitigate these drawbacks, this paper proposes and analyzes the features of an improved stereo matching algorithm that not only enhances matching accuracy but also is also robust to noise. The proposed algorithm, based on the ACT, adopts the truncated absolute difference and the multiple sparse windows method. The experimental results show that compared to the ACT, the proposed algorithm reduces the average error rate of depth maps on Middlebury dataset images by as much as 2% and that is has a strong robustness to noise.
Recently in the area-based stereo matching field, Adaptive Support-Weight (ASW) method that weights matching cost adaptively according to the luminance intensity and the geometric difference shows promising matching performance. However, ASW requires more computational cost than other matching algorithms do and its real-time implementation becomes impractical. By applying Integral Histogram technique after approximating to the Bilateral filter equation, the computational time of ASW can be restricted in constant time regardless of the support window size. However, Integral Histogram technique causes loss of the matching accuracy during approximation process of the original ASW equation. In this paper, we propose a novel algorithm that maintains the ASW algorithm's matching accuracy while reducing the computational costs. In the proposed algorithm, we propose Sub-Block method that groups the pixels within the support area. We also propose the method adjusting the disparity search range depending on edge information. The proposed technique reduces the calculation time efficiently while improving the matching accuracy.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.11
/
pp.90-98
/
2013
The stereo system based on local matching is very popular due to its algorithmic simplicity, however it is limited to apply to various applications because it shows poor quality with low matching rates. In this paper, we propose and design a realtime stereo system based on an adaptive support-weight and the system shows low error rates and realtime performance. Generally, in the adaptive support-weight algorithm the intermediate computing results can not be reused to reduce the number of computations. In this research we modify the scheduling to reuse the intermediate results for the better performance by processing rows and columns separately. The nonlinear functions such as exponential or arc tangent have been designed with piecewise linear and step functions by empirical simulations and error analysis. The proposed architecture is composed of 9 processing elements for realtime performance. The proposed stereo system has been designed and synthesized using Donbu Hitek 0.18um standard cell library and can run up to 350Mhz operation frequency (33 frames per second) with 424K gates.
When the input features are generated by factors in a classification problem, it is more meaningful to identify important factors, rather than individual features. The $F_{\infty}$-norm support vector machine(SVM) has been developed to perform automatic factor selection in classification. However, the $F_{\infty}$-norm SVM may suffer from estimation inefficiency and model selection inconsistency because it applies the same amount of shrinkage to each factor without assessing its relative importance. To overcome such a limitation, we propose the adaptive $F_{\infty}$-norm ($AF_{\infty}$-norm) SVM, which penalizes the empirical hinge loss by the sum of the adaptively weighted factor-wise $L_{\infty}$-norm penalty. The $AF_{\infty}$-norm SVM computes the weights by the 2-norm SVM estimator and can be formulated as a linear programming(LP) problem which is similar to the one of the $F_{\infty}$-norm SVM. The simulation studies show that the proposed $AF_{\infty}$-norm SVM improves upon the $F_{\infty}$-norm SVM in terms of classification accuracy and factor selection performance.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.9
/
pp.45-53
/
2015
Adaptive support-weight based algorithm can produce better disparity map compared to generic area-based algorithms and also can be implemented as a realtime system. In this paper, we propose a realtime system based on geodesic support-weight which performs better segmentation of objects in the window. The data scheduling is analyzed for efficient hardware design and better performance and the parallel architecture for weight update which takes the longest delay is proposed. The exponential function is efficiently designed using a simple step function by careful error analysis. The proposed architecture is designed with verilogHDL and synthesized using Donbu Hitek 0.18um standard cell library. The proposed system shows 2.22% of error rate and can run up to 260Mhz (25fps) operation frequency with 182K gates.
최근 3 차원 깊이 정보를 활용하는 분야가 많아짐에 따라, 정확한 깊이 정보를 추출하기 위한 연구가 계속 진행되고 있다. 특히 ASW(Adaptive Support Weight)는 기존의 영역 기반 알고리즘의 정확도를 향상시키기 위한 방법으로 많이 이용되고 있다. 그 중에서 ACT(Adaptive Census Transform)는 폐백 영역이나 경계 영역에서 정확도가 낮다는 단점이 있었다. 본 논문에서는 정확한 깊이 맵 (depth map)을 추출하기 위해, 기존의 ACT를 개선한 스테레오 정합 알고리즘을 제안한다. 이는 잡음에 강하고 재사용성이 높은 MSW(Multiple Sparse Windows)를 기반으로, TAD(Truncated Absolute Difference)와 ACT 두 개의 정합 알고리즘을 동시에 사용하여 폐색 영역과 울체의 경계 영역에서 정확도가 낮은 기존의 방법을 개선한다. Middlebury에서 제공하는 영상을 사용한 시뮬레이션 결과는 제안한 방법이 기존의 방법보다 평균적으로 약 1.9% 낮은 에러율(error rate)을 가짐을 보여준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.9
/
pp.4375-4388
/
2018
To solve the problem of transmission errors in stereoscopic images, this paper proposes a novel error concealment (EC) method using superpixel segmentation and adaptive disparity selection (SSADS). Our algorithm consists of two steps. The first step is disparity estimation for each pixel in a reference image. In this step, the numbers of superpixel segmentation labels of stereoscopic images are used as a new constraint for disparity matching to reduce the effect of mismatching. The second step is disparity selection for a lost block. In this step, a strategy based on boundary smoothness is proposed to adaptively select the optimal disparity which is used for error concealment. Experimental results demonstrate that compared with other methods, the proposed method has significant advantages in both objective and subjective quality assessment.
This study aims to investigate development directions for smart contents to support enhancing adaptive behavior skills of children with autistic disorder in elementary school. AHP survey of experts including special education teachers and directors in educational institution for disability children was performed to analyze importance weight for smart contents development necessity and effectiveness in adaptive behavior skills. And the smart contents development suitability through pre-discussion for idea generation for various development method and AHP survey with smart application development experts was evaluated. The results show that the effective and suitable adaptive behavior skills for smart contents development were understanding of languaging, time management and keeping, movement skills, wearing clothes, and personal hygiene in order of importance. Based on this study, education authorities should make an effort not to develop fragmentary educational smart contents but to support development of smart contents and service systems with better effectiveness and usability to meet demand for special education teachers and parents considering characteristics of children with autism.
스테레오 매칭(Stereo Matching) 기법에 대한 전역적인 방법과 지역적인 방법에 대한 연구가 활발하게 진행되고 있다. 최근의 적응적 영역 가중치 방법(Adaptive Support-Weight)은 매우 뛰어난 결과에 비해 많은 계산 시간이 필요하다. 따라서 로봇시스템에서 스테레오 매칭을 이용하기에는 부적합하다. 본 논문에서는 분리 가능한 Bilateral 필터를 이용하여 빠른 스테레오매칭 기법을 제안한다
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.2
/
pp.187-196
/
1996
This paper introduces the concept of fixed weights and proposes an algorithm for classification by adding this concept to vector space separation method in LVQ. The proposed algorithm is based on competitive learning. It uses fixed weightsfor generality and fast adaptation efficient radius for new weight creation, and L1 distance for fast calcualtion. It can be applied to many fields requiring adaptive learning with the support of generality, real-tiem processing and sufficient training effect using smaller data set. Recognition rate of over 98% for the train set and 94% for the test set was obtained by applying the suggested algorithm to on-line handwritten recognition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.