• Title/Summary/Keyword: adaptive step size

Search Result 197, Processing Time 0.027 seconds

Automated Vessels Detection on Infant Retinal Images

  • Sukkaew, Lassada;Uyyanonvara, Bunyarit;Barman, Sarah A;Jareanjit, Jaruwat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.321-325
    • /
    • 2004
  • Retinopathy of Prematurity (ROP) is a common retinal neovascular disorder of premature infants. It can be characterized by inappropriate and disorganized vessel. This paper present a method for blood vessel detection on infant retinal images. The algorithm is designed to detect the retinal vessels. The proposed method applies a Lapalacian of Gaussian as a step-edge detector based on the second-order directional derivative to identify locations of the edge of vessels with zero crossings. The procedure allows parameters computation in a fixed number of operations independent of kernel size. This method is composed of four steps : grayscale conversion, edge detection based on LOG, noise removal by adaptive Wiener filter & median filter, and Otsu's global thresholding. The algorithm has been tested on twenty infant retinal images. In cooperation with the Digital Imaging Research Centre, Kingston University, London and Department of Opthalmology, Imperial College London who supplied all the images used in this project. The algorithm has done well to detect small thin vessels, which are of interest in clinical practice.

  • PDF

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.

A Study of the Application of an Improved Learning Control on the Finishing Mill in No.2 Hot Strip Mill plant in POSCO (포항제철 2열연 사상 압연에 대한 개선된 학습 제어의 현장 적용 연구)

  • Jeong, Ho-Seong;Paek, Ki-Nam;Hur, Myung-Joon;Choi, Seung-Gap;Jeong, Hae-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.56-59
    • /
    • 1988
  • The main purpose of Set-up control of hot strip mill plant is to obtain the most regular thickness. Then the learning or adaptive computer control in hot strip rolling mill has been developed. But it is very difficult to keep the inter-stands load distribution ratio uniform; so that the deviation of strip flatness is not avoidable. This leads to the degradation of quality of the products. In this report, an improved method base on the steepest descent method including the computation of optimum step size. This method is applied to the off-line simulation. In consequence, the better balances of inter-stands load distribution is achieved in addition to improvements of output thickness of hot strip mill in POSCO.

  • PDF

CMAC (Cerebellar Model Arithmetic Controller)

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.675-681
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, It is necessary to analyze the effects of the CMAC control parameters an the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with prespecified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF

Labview FPGA Implementation of IGC Algorithm for Real Time Noise Cancelation (실기간 소음제거를 위한 IGC Algorithm의 LabVIEW FPGA 구현)

  • Kim, Chun-Sik;Lee, Chae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.183-189
    • /
    • 2011
  • The LMS(Least Mean Square) algorithm is generally used because of tenacity, high mating spots and simplicity of realization. But the LMS algorithm has trade-off between nonuniform collect and EMSE(Excess Mean Square Error). To overcome this weakness, variable step size is used widely but it needs a lot of calculation load. In this paper we consider new algorithm, which can reduce calculations and adapt in case of environment changes, uses original signal and noise signal of IGC(Instantaneous Gain Control). For the real time processing of IGC algorithm, we remove the logarithmic function. The performance of proposed algorithm is tested to adaptive noise canceller in automobile. We show implemented LabVIEW FPGA system of IGC algorithm is more efficient than others.

Use of a Solution-Adaptive Grid (SAG) Method for the Solution of the Unsaturated Flow Equation (불포화 유동 방정식의 해를 위한 해적응격자법의 이용 연구)

  • Koo, Min-Ho
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.23-32
    • /
    • 1999
  • A new numerical method using solution-adaptive grids (SAG) is developed to solve the Richards' equation (RE) for unsaturated flow in porous media. Using a grid generation technique, the SAG method automatically redistributes a fixed number of grid points during the flow process, so that more grid points are clustered in regions of large solution gradients. The method uses the coordinate transformation technique to employ a new transformed RE, which is solved with the standard finite difference method. The movement of grid points is incorporated into the transformed RE, and therefore all computation is performed on fixed grid points of the transformed domain without using any interpolation techniques. Thus, numerical difficulties arising from the movement of the wetting front during the infiltration process have been substantially overcome by the new method. Numerical experiments for an one-dimensional infiltration problem are presented to compare the SAG method to the modified Picard method using a fixed grid. Results show that accuracy of a SAG solution using 41 nodes is comparable with the solution of the fixed grid method using 201 nodes, while it requires only 50% of the CPU time. The global mass balance and the convergence of SAG solutions are strongly affected by the time step size (Δt) and the weighting parameter (${\gamma}$) used for generating solution-adaptive grids. Thus, the method requires automated readjustment of Δt and ${\gamma}$ to yield mass-conservative and convergent solutions, although it may increase computational costs. The method can be effective especially for simulating unsaturated flow and other transport problems involving the propagation of a sharp-front.

  • PDF

Convergence Speed Improvement in MMA Algorithm by Serial Connection of Two Stage Adaptive Equalizer (2단 적응 등화기의 직렬 연결에 의한 MMA 알고리즘의 수렴 속도 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.99-105
    • /
    • 2015
  • This paper deals with the mMMA (modified MMA) which possible to improving the convergence speed that employing the serial connecting form of two stage digital filter instead of signal filter of MMA adaptive equalizer without applying the variable step size for compensates the intersymbol interference by channel distortion in the nonconstant modulus signal. The adaptive equalizer can be implemented by signal digital filter using the finite order tap delay line. In this paper, the equalizer is implemented by the two stage serial form and the filter coefficient are updated by the error signal using the same algorithm of MMA in each stage. The fast convergence speed is determined in the first stage, and the residual isi left at the output of first stage output is minimized in the second stage filter. The same digital filter length was considered in single stage and two stage system and the performance of these systems were compared. The performance index includes the output signal constellation, the residual isi and maximum distortion, MSE that is measure of the convergence characteristics, the SER. As a result of computer simulation, mMMA that has a FIR structure of two stage, has more good performance in every performance index except the constellation diagram due to equalization noise and improves the convergence speed about 1.5~1.8 time than the present MMA that has a FIR structure of single stage.

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.

Multiple Audio Watermarking using Quantization Index Modulation on Frequency Phase and Magnitude Response (주파수 위상 응답과 크기 응답에 QIM을 이용한 다중 오디오 워터마킹)

  • Seo, Yejin;Cho, Sangjin;Chong, Uipil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • This paper describes a multiple audio watermarking using Quantization Index Modulation (QIM) on frequency phase and magnitude response. Proposed embedding procedure is composed of two stage. At the first stage, the watermark is embedded on the frequency phase response using QIM. In the second stage, the watermark is embedded using adaptive QIM with the step-size that is adaptively determined using the maximum value of the frequency magnitude response of every frame. The watermark is extracted by calculating the Euclidean distance as the blind detection. The proposed method is robust against most of attacks of audio watermark benchmarking. For the Fourier attacks, the proposed method shows over 95% recovery rate.

Automatic Liver Segmentation on Abdominal Contrast-enhanced CT Images for the Pre-surgery Planning of Living Donor Liver Transplantation

  • Jang, Yujin;Hong, Helen;Chung, Jin Wook
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • Purpose For living donor liver transplantation, liver segmentation is difficult due to the variability of its shape across patients and similarity of the density of neighbor organs such as heart, stomach, kidney, and spleen. In this paper, we propose an automatic segmentation of the liver using multi-planar anatomy and deformable surface model in portal phase of abdominal contrast-enhanced CT images. Method Our method is composed of four main steps. First, the optimal liver volume is extracted by positional information of pelvis and rib and by separating lungs and heart from CT images. Second, anisotropic diffusing filtering and adaptive thresholding are used to segment the initial liver volume. Third, morphological opening and connected component labeling are applied to multiple planes for removing neighbor organs. Finally, deformable surface model and probability summation map are performed to refine a posterior liver surface and missing left robe in previous step. Results All experimental datasets were acquired on ten living donors using a SIEMENS CT system. Each image had a matrix size of $512{\times}512$ pixels with in-plane resolutions ranging from 0.54 to 0.70 mm. The slice spacing was 2.0 mm and the number of images per scan ranged from 136 to 229. For accuracy evaluation, the average symmetric surface distance (ASD) and the volume overlap error (VE) between automatic segmentation and manual segmentation by two radiologists are calculated. The ASD was $0.26{\pm}0.12mm$ for manual1 versus automatic and $0.24{\pm}0.09mm$ for manual2 versus automatic while that of inter-radiologists was $0.23{\pm}0.05mm$. The VE was $0.86{\pm}0.45%$ for manual1 versus automatic and $0.73{\pm}0.33%$ for manaual2 versus automatic while that of inter-radiologist was $0.76{\pm}0.21%$. Conclusion Our method can be used for the liver volumetry for the pre-surgery planning of living donor liver transplantation.