• 제목/요약/키워드: adaptive predictive control

검색결과 97건 처리시간 0.026초

경계의 방향성에 근거를 둔 가변블록형상 적응 예측영상부호화 (Adaptive Predictive Image Coding of Variable Block Shapes Based on Edge Contents of Blocks)

  • 도재수;김주영;장익현
    • 한국정보처리학회논문지
    • /
    • 제7권7호
    • /
    • pp.2254-2263
    • /
    • 2000
  • This paper proposes an efficient predictive image-compression technique based on vector quantization of blocks of pels. In the proposed method edge contents of blocks control the selection of predictors and block shapes as well. The maximum number of bits assigned to quantizers has been in creased to 3bits/pel from 1/5bits/pel, the setting employed by forerunners in predictive vector quantization of images. This increase prevents the saturation in SNR observed in their results in high bit rates. The variable block shape is instrumental in eh reconstruction of edges. The adaptive procedure is controlled by means of he standard deviation ofp rediction errors generated by a default predictor; the standard deviation address a decision table which can be set up beforehand. eh proposed method is characterized by overall improvements in image quality over A-VQ-PE and A-DCT VQ, both of which are known for their efficient use of vector quantizers.

  • PDF

지연시간을 갖는 비선형 시스템을 위한 퍼지-신경망 기반 예측제어기 설계 (Design of Neuro-Fuzzy-based Predictive Controller for Nonlinear Systems with Time Delay)

  • 김성호;김주환;이영삼
    • 한국지능시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.144-150
    • /
    • 2002
  • 본 논문에서는 지연시간을 갖는 비선형 시스템의 효율적 제어를 위해 퍼지-신경망에 기반한 지연시간 보상기를 제안하였다. 제안된 제어시스템은 ANFIS(Adaptive Neuro-Fuzzy Inference System)라고 불리는 두개의 퍼지-신경망으로 구성되며 이중 하나는 직-병렬 방식으로 동작하고 다른 하나는 병렬 방식으로 동작한다. 직-병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 갖는 비선형 시스템의 응답을 추종하는 특성을 갖으며 병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 보상하기 위한 시스템 출력을 예측하는 기능을 수행한다. 따라서 본 연구에서 제안된 시스템은 전형적인 Smith 예측기의 비선형 시스템에의 적용을 위한 확장이라고 생각할 수 있다. 본 논문에서는 제안된 지연시간 보상기의 상세한 설계과정을 보였으며 또한 제안된 제어기 설계 기법의 유용성 화인을 위해 비선형 수치데이터에 대한 컴퓨터 모의실험을 수행하였다.

일반화 최소분산법을 기초로 한 예측 제어기 (A Predictive Controller Based on the Generalized Minimum Variance Approach)

  • 한홍석;양해원
    • 대한전기학회논문지
    • /
    • 제37권8호
    • /
    • pp.557-562
    • /
    • 1988
  • This paper presents a class of discrete adaptive controller that can be applied to a plant without sufficient a priori information. It is well known that the GMV(Generalized Minmum Variance) contrlller performs satisfactorily if the plant time delay is known. By introducing the long-range prediction into the GMV controller, robustness to the time delay can be improved, although optimality is lost. Such an idea motivates a predictive control system to be proposed here, where the system minimizes multi-stage cost via the GMV approach. Moreover, the detuning control weight is determined by an on-line tuning method. It is shown that robustness, computational efficiency, and performance of the resulting control system are improved as compared with those of the GPC(Generalized Predictive Control)system.

  • PDF

효모 배양을 위한 발효공정의 최적화 및 적응제어 (Optimization and Adaptive Control for Fed-Batch Culture of Yeast)

  • 백승윤;유영제이광순
    • KSBB Journal
    • /
    • 제6권1호
    • /
    • pp.15-25
    • /
    • 1991
  • The optimal glucose concentration for the high-density culture of recombinant yeasts was obtained using dynamic simulation. An adaptive and predictive algoritilm complimented by the rule base was proposed for the control of the fed-batch fermentation process. The measurement of process variables has relatively long sampling period and relatively long time delay characteristics. As one of the solution on these problems, prediction techniques and rule bases were added to a classical recursive identification and control algorithm. Rule bases were used in the determination of control input considering the difference between the predicted value and the measured value. A mathelnatical model was used in the estimation and interpretation of the changes of state variables and parameters. Better performances were obtained by employing the control algorithm proposed in the present study compared to the conventional adaptive control method.

  • PDF

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

간접 적응 제어 기법을 이용한 이산치 혼돈 시스템의 제어 (Control of discrete-time chaotic systems using indirect adaptive control)

  • 박광성;주진만;최윤호;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.318-322
    • /
    • 1996
  • In this study, a controller design method is proposed for controlling the discrete-time chaotic systems efficiently. Our proposed control method is based on Generalized Predictive Control and uses NARMAX models as a controlled model. In order to evaluate the performance of our proposed controller design method, a proposed controller is applied to Henon system which is a discrete-time chaotic system, and then the control performance of the proposed controller are compared with those of the previous model-based controllers through computer simulations. Through simulations, it is shown that the control performance of the proposed controller is superior to that of the conventional model-based controller.

  • PDF

신경회로망을 이용한 이산치 혼돈 시스템의 모델 예측제어 (Model Predictive Control of Discrete-Time Chaotic Systems Using Neural Network)

  • 김세민;최윤호;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.933-935
    • /
    • 1999
  • In this paper, we present model predictive control scheme based on neural network to control discrete-time chaotic systems. We use a feedforward neural network as nonlinear prediction model. The training algorithm used is an adaptive backpropagation algorithm that tunes the connection weights. And control signal is obtained by using gradient descent (GD), some kind of LMS method. We identify that the system identification results through model prediction control have a great effect on control performance. Finally, simulation results show that the proposed control algorithm performs much better than the conventional controller.

  • PDF

비선형 공정의 적응제어 방법 (An adaptive control method for the nonlinear process)

  • 노균;윤인섭;어영구;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.331-336
    • /
    • 1989
  • Under the condition of stable inverse a billinear model predictive control method for SISO and MIMO system with time delay is derived. For processes subject to a bounded disturbance the proposed control method with a classical recursive adaptation algorithm was shown to be stable in the sense of the convergence of parameter estimates and the boundedness of the control error. Several simulation results demonstrate the characteristics of the proposed bilinear model predictive control method.

  • PDF

증기발생기 수위제어를 위한 적응일반형예측제어 설계 (Design of Adaptive GPC wi th Feedforward for Steam Generator)

  • 김창회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.261-264
    • /
    • 1993
  • This paper proposes an adaptive generalized predictive control with feedforward algorithm for steam generator level control in nuclear power plant. The proposed algorithm is shown that the parameters of N-step ahead predictors can be obtained using the parameters of one-step ahead predictor which is derived from plant model with feedforward. Using this property the proposed scheme is an adaptive algorithm which consists of GPC method and the recursive least squares algorithm for identifying the parameters of one-step ahead predictor. Also, computer simulations are performed to evaluate the performance of proposed algorithm using a mathematical model of PWR steam generator Simulation results show good performances for load variation. And the proposed algorithm shows better responses than PI controller does.

  • PDF