• Title/Summary/Keyword: adaptive noise model

Search Result 220, Processing Time 0.026 seconds

Adaptive Correlation Noise Model for DC Coefficients in Wyner-Ziv Video Coding

  • Qin, Hao;Song, Bin;Zhao, Yue;Liu, Haihua
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • An adaptive correlation noise model (CNM) construction algorithm is proposed in this paper to increase the efficiency of parity bits for correcting errors of the side information in transform domain Wyner-Ziv (WZ) video coding. The proposed algorithm introduces two techniques to improve the accuracy of the CNM. First, it calculates the mean of direct current (DC) coefficients of the original WZ frame at the encoder and uses it to assist the decoder to calculate the CNM parameters. Second, by considering the statistical property of the transform domain correlation noise and the motion characteristic of the frame, the algorithm adaptively models the DC coefficients of the correlation noise with the Gaussian distribution for the low motion frames and the Laplacian distribution for the high motion frames, respectively. With these techniques, the proposed algorithm is able to make a more accurate approximation to the real distribution of the correlation noise at the expense of a very slight increment to the coding complexity. The simulation results show that the proposed algorithm can improve the average peak signal-to-noise ratio of the decoded WZ frames by 0.5 dB to 1.5 dB.

Active Vibration Control of a Opened Box Structure By a Model Reference Neuro-Controller (모델기반 신경망 제어기를 이용한 열린 박스 구조물의 진동제어)

  • Jang, Seung-Ik;Shen, Yun-De;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1602-1607
    • /
    • 2003
  • Vibration causes noise and sometimes makes structure unstable. Especially, due to the efforts of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance can cause vibration and low damping ratio makes residual vibration last long time. This research is concerned with the model reference neuro-controller design for the vibration suppression of smart structures. By using a model reference neurocontroller, which is one of the algorithms of adaptive control, we performed an adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a model reference neuro-controller, was proved in its effectiveness by applying to an opened box structure. The model reference neuro-controller is implemented with DSP, and the real-time adaptive vibration control experiment results confirm that the model reference neuro-controller is reliable.

  • PDF

Design of Adaptive Fuzzy IMM Algorithm for Tracking the Maneuvering Target with Time-varying Measurement Noise

  • Kim, Hyun-Sik;Kim, In-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.307-316
    • /
    • 2007
  • In real system application, the interacting multiple model (IMM) based algorithm operates with the following problems: it requires less computing resources as well as a good performance with respect to the various target maneuvering, it requires a robust performance with respect to the time-varying measurement noise, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an adaptive fuzzy interacting multiple model (AFIMM) algorithm, which is based on the basis sub-models defined by considering the maneuvering property and the time-varying mode transition probabilities designed by using the mode probabilities as the inputs of the fuzzy decision maker whose widths are adjusted, is proposed. To verify the performance of the proposed algorithm, a radar target tracking is performed. Simulation results show that the proposed AFIMM algorithm solves all problems in the real system application of the IMM based algorithm.

SAR Despeckling with Boundary Correction

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.270-273
    • /
    • 2007
  • In this paper, a SAR-despeck1ing approach of adaptive iteration based a Bayesian model using the lognormal distribution for image intensity and a Gibbs random field (GRF) for image texture is proposed for noise removal of the images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. The iterative approach based on MRF is very effective for the inner areas of regions in the observed scene, but may result in yielding false reconstruction around the boundaries due to using wrong information of adjacent regions with different characteristics. The proposed method suggests an adaptive approach using variable parameters depending on the location of reconstructed area, that is, how near to the boundary. The proximity of boundary is estimated by the statistics based on edge value, standard deviation, entropy, and the 4th moment of intensity distribution.

  • PDF

A Study on the Statistical Model Validation using Response-adaptive Experimental Design (반응적응 시험설계법을 이용하는 통계적 해석모델 검증 기법 연구)

  • Jung, Byung Chang;Huh, Young-Chul;Moon, Seok-Jun;Kim, Young Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.347-349
    • /
    • 2014
  • Model verification and validation (V&V) is a current research topic to build computational models with high predictive capability by addressing the general concepts, processes and statistical techniques. The hypothesis test for validity check is one of the model validation techniques and gives a guideline to evaluate the validity of a computational model when limited experimental data only exist due to restricted test resources (e.g., time and budget). The hypothesis test for validity check mainly employ Type I error, the risk of rejecting the valid computational model, for the validity evaluation since quantification of Type II error is not feasible for model validation. However, Type II error, the risk of accepting invalid computational model, should be importantly considered for an engineered products having high risk on predicted results. This paper proposes a technique named as the response-adaptive experimental design to reduce Type II error by adaptively designing experimental conditions for the validation experiment. A tire tread block problem and a numerical example are employed to show the effectiveness of the response-adaptive experimental design for the validity evaluation.

  • PDF

Speckle noise reduction in SAR images using an adaptive wavelet Shrinkage method

  • Kim, Kwang-Yong;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.303-307
    • /
    • 2002
  • Although Synthetic Aperture Radar(SAR) is a very powerful and attractive tool, automatic interpretation of SAR images is extremely difficult because of several reason. Spatially, speckle noise reduction in SAR images is important step to interpret the SAR image at the preprocessing step. The speckle noise in SAR images is modeled to be multiplicative, and therefore, a signal-dependent noise. So, it has deflated many image-denoising algorithms that are based on additive noise model. In this paper, we propose an adaptive wavelet shrinkage method for speckle noise reduction in SAR images by analyzing the high frequency level in detail. We first decompose minutely the high frequency level to analyze the noise level. And then, we determine the weighting threshold value per the level, and layer. Finally, using those weighting threshold, we produce the efficient wavelet shrinkage method. So, this method not only reduces the speckle noise, but also preserves image detail and sharpness.

  • PDF

A Study on the Design of Correction Filter for High-Speed Guided Missile Firing from Warship after Transfer Alignment (전달정렬 함상 발사 고속 유도무기의 보정필터 설계에 대한 연구)

  • Kim, Cheon-Joong;Lee, In-Seop;Oh, Ju-Hyun;Yu, Hae-Sung;Park, Heung-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.108-121
    • /
    • 2019
  • This paper presents the study results on the design of the correction filter to improve the azimuth error estimation of the high-speed guided missile launched from the warship after the transfer alignment. We theoretically proved that the transfer alignment performance is determined by the accuracy of the marine inertial navigation system and the observability of the attitude error state variable in the transfer alignment filter, and that most of navigation errors in high-speed guided missile are caused by azimuth error. In order to improve the azimuth estimation performance of the correction filter, the multiple adaptive estimation method and the adaptive filters adapting the measurement noise covariance or the process noise covariance are proposed. The azimuth estimation performance of the proposed adaptive filter and the existing Kalman filter are compared and analyzed each other for 8 different transfer alignment accuracy cases. As a result of comparison and analysis, it was confirmed that the adaptive filter adapting the process noise covariance has the best azimuth estimation performance. These results can be applied to the design of correction filters for high-speed guided missile.

Adaptive Watermarking Using Successive Subband Quantization and Perceptual Model Based on Multiwavelet Transform Domain (멀티웨이브릿 변환 영역 기반의 연속 부대역 양자화 및 지각 모델을 이용한 적응 워터마킹)

  • 권기룡;이준재
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1149-1158
    • /
    • 2003
  • Content adaptive watermark embedding algorithm using a stochastic image model in the multiwavelet transform is proposed in this paper. A watermark is embedded into the perceptually significant coefficients (PSCs) of each subband using multiwavelet transform. The PSCs in high frequency subband are selected by SSQ, that is, by setting the thresholds as the one half of the largest coefficient in each subband. The perceptual model is applied with a stochastic approach based on noise visibility function (NVF) that has local image properties for watermark embedding. This model uses stationary Generalized Gaussian model characteristic because watermark has noise properties. The watermark estimation use shape parameter and variance of subband region. it is derive content adaptive criteria according to edge and texture, and flat region. The experiment results of the proposed watermark embedding method based on multiwavelet transform techniques were found to be excellent invisibility and robustness.

  • PDF

Speckle noise elimination of ultrasonic images by using generalized noise model and adaptive weighted median filter (일반형 잡음모델과 적응성 가중 메디안 필터를 이용한 초음파 영상의 스펙클 잡음 제거)

  • 윤귀영;안영복
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.89-101
    • /
    • 1997
  • A technical method of noise modeling and adaptive filtering reducing of speckle noise in ultrasonic medical images is presented. By adjusting the characteristics of the filer according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in diagnosis. Homogeneous factor(HF) from the noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the diagnostic systems with various inner statistical properties is proposed. We show by the experimented that the performance of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region.

  • PDF

Content Adaptive Watermarkding Using a Stochastic Visual Model Based on Multiwavelet Transform

  • Kwon, Ki-Ryong;Kang, Kyun-Ho;Kwon, Seong-Geun;Moon, Kwang-Seok;Lee, Joon-Jae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1511-1514
    • /
    • 2002
  • This paper presents content adaptive image watermark embedding using stochastic visual model based on multiwavelet transform. To embedding watermark, the original image is decomposed into 4 levels using a discrete multiwavelet transform, then a watermark is embedded into the JND(just noticeable differences) of the image each subband. The perceptual model is applied with a stochastic approach fer watermark embedding. This is based on the computation of a NVF(noise visibility function) that have local image properties. The perceptual model with content adaptive watermarking algorithm embed at the texture and edge region for more strongly embedded watermark by the JND. This method uses stationary Generalized Gaussian model characteristic because watermark has noise properties. The experiment results of simulation of the proposed watermark embedding method using stochastic visual model based on multiwavelet transform techniques was found to be excellent invisibility and robustness.

  • PDF