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Abstracts: In this paper, a SAR-despeckling
approach of adaptive iteration based a Bayesian
model using the lognormal distribution for 1mage
intensity and a Gibbs random field (GRF) for
image texture is proposed for noise removal of the
images that are corrupted by multiplicative
speckle noise. When the 1image intensity 1s
logarithmically transformed, the speckle noise 1s
approximately Gaussian additive noise, and 1t
tends to a normal probability much faster than the
intensity distribution. The MRF is incorporated
into digital image analysis by viewing pixel types
as states of molecules in a lattice-like physical
system. The iterative approach based on MRF 1s
very effective for the inner areas of regions in the
observed scene, but may result in yielding false
reconstruction around the boundaries due to using
wrong information of adjacent regions with
different characteristics. The proposed method
suggests an adaptive approach using variable
parameters depending on the location of
reconstructed area, that is, how near to the
boundary. The proximity of boundary 1s
estimated by the statistics based on edge value,
standard deviation, entropy, and the 4th moment
of intensity distribution.
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1. Introduction

In the last couple of decades, the use of
Synthetic Aperture Radar (SAR) has become
increasingly popular because there are several
well-known advantages of SAR data over other
imaging systems (Leberl, 1990) including its

capacity of imaging regardless weather conditions.

However, the radar wave coherence produces
“speckle” in SAR imagery. This phenomenon
gives to the images a granular appearance that
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complicates image analysis and interpretation in
remote sensing tasks. Although it 1s a
deterministic phenomenon due to the coherent
processing of terrain backscattering signals, the
speckle contribution is often considered as noise
that degrades the quality of SAR imagery.
Speckle filtering is a common requirement in
many SAR image applications. Up to now,
speckle reduction remains a major issue in SAR
imagery processing.

The iterative maximum a posteriori (MAP)
approaches using a Bayesian model based on the
lognormal distribution for image intensity and a
Gibbs random field (GRF) for image texture have
been proposed for despeckling the SAR images
that are corrupted by multiplicative speckle noise
(Lee, 2007a; Lee, 2007b). When the image
intensity is logarithmically transformed, the
speckle noise is approximately Gaussian additive
noise, and it tends to a normal probability much
faster than the intensity distribution (Arsenault
and April, 1976). The MRF is incorporated into
digital image analysis by viewing pixel type s as
states of molecules in a lattice-like physical
system defined on a GRF (Georgii, 1979).
Because of the MRF-GRF equivalence resulted
from the  Hammersley—Clifford  theorem
(Kindermann and Snell, 1982), the assignment of
an energy function to the physical system
determines its Gibbs measure, which is used to
model molecular interactions. The MAP
estimation method using the Point-Jacobian
iteration was first proposed (Lee, 2007a), and Lee
(2007b) has then modified the previous method by
using the smoothing parameters adaptively
estimated at each iterations. Compared to the
results of the conventional schemes, the results of
both approaches have shown considerable
improvement. In this study, an iterative MAP
approach, which employs variable parameters
depending on the location, is proposed. In the
new scheme, different values are given for the



parameters according to how near to the boundary.
The proximity to the boundary is measured by the
statistics based on edge value, standard deviation,
entropy, and the 4th moment of intensity

distribution, which was suggested by Cheng et al.
(2003).

2. Bayesian Function for MAP Estimation

The image model of SAR imagery is usually
given by

Zk Evkﬂk . (1)

where 7, follows a log-normal distribution. If
Y={y,=lnz kel,}, X={x, =lnv kel },
and o} isavariance of In7, , then

Y ~ N(X,%) where ¥ =diagonal{ci kel }.

Image processes are assumed to combine the
random fields associated with intensity and
texture respectively. The objective measure for
determining the optimal restoration of this
“double compound stochastic” image process is
based on Bayes’ theorem. Given an observed
image Y, the Bayesian method is to find the MAP
estimate from the mode of the posterior
probability distribution of the noise-free vector X,

or equivalently, to maximize the log-likelihood
function

(PN =InP(Y | X)+InP(X). )

In the proposed algorithm, the MRF is used to
quantify the spatial interaction probabilistically,
that is, to provide a type of prior information on
the image texture.

If R, is the index set of neighbors of the ith pixel,
R={R;|i e 1,} is a “neighborhood system” for ,.
A “clique” of {I,, R}, ¢, is a subset of 1, such that
every pair of distinct indices in ¢ represents pixels
which are mutual neighbors, and C denotes the set
of all cliques. A GREF relative to the graph {/,,
R} on X is defined as

P(X)=2" exp{— E(X )}
E(X)= Z V.(X) (energy function) (3)
ceC

where Z is a normalizing constant and V., is a
potential function which has the property that it
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depends only on X and ¢. Specification of C and
V. is sufficient to formulate a Gibbs measure for
the region-class model. A particular class of
GRF, in which the energy function is expressed in
terms of non-symmetric “pair-potentials,” 1s used
in this study (Kindermann and Snell, 1982).
Here, the energy function of the GRF is specified
as a quadratic function of X, which defines the
probability structure of the texture process:

Ep(X)ZZ Z%‘(xf _xj)2 (4)

iel, (i,j)eC,
where «; is a nonnegative coefficient vector

which represents the “bonding strength” of the ith
and the jth pixels.

The log-likelihood function of Eq. (2) using the
log-normal intensity model and the GRF texture
model is:

IPNc—(Y-X)T ' -X)-XBX (5
where B ={f;} is the bonding strength matrix.

3. Point-Jacobian Iteration MAP Estimation

Since the log-likelihood function of Eq. (5) 1s
convex, the MAP estimate of X is obtained by
taking the first derivative:

> (Y -X)-BX =0. (6)

By solving Eq. (6) with the Point-Jacobian
iteration (Varga, 1962), the noise-free imtensity
can be recovered iteratively (Lee, 2007a): given

an initial estimate, x,, at the hth iteration for
Viel,

. |
N 2 el
X, = 0'3_2 iy [O-f Vi~ Z/gg‘xj ] (7)

(1, /)eC,

Various regions constituting an 1mage can be
characterized by textural components. The
bonding strength coefficients of Eq. (4) arc
associated with local interaction between
neighboring pixels and can provide some
contextual information on the local region. It 1s
important to choose the coefficients suitable for



the analyzed image. Given a constant r, the
Bayesian MAP estimation of Eq. (5) can be
considered as an optimization problem:

argmin Z Zaff (xi -X j)2 (8)
X liel, G,)eC,

subjectto o, (v, —x, ) <r,Vkel, .

From the optimization of Eq. (8), the bonding
strength coefficient f; = g, can be estimated as

i“ij
(Lee, 2007a)

&' = ! ,Viel
o >ali-yf
(i,))eC, _
r_ (9)
(J’f _J’k)2 -
for(i,k)e C
Ay = Z(yf"yj)z g
(i, /)eC,
0 otherwise

The constant » 1s a parameter related to the
distribution of Y and its appropriate choice 1s unit
value.

4. Adaptive Iteration MAP Estimation

The adaptive iteration method differs from the
Point-Jacobian iteration only in the estimation of
bonding strength coefficients. The coefficients
are computed in Eq. (9) using the values estimated
at the previous iteration for the adaptive approach
(Lee, 2007b): for the Ath iteration,

i (Ah—l Ah-1)2
X, —X .
‘ £ for i,k)e C
~ . (A h_]_ . A h_l )2 p
d=| QW%
(£,/3eC,
i 0 : otherwise

(10)

&,: ,Viel

i

¥
2 A (ar1 Ak
g, Z“rj(xr‘ —X; )2

(1,))eC,

In the adaptive approach, the observed process 1s
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newly defined at each iteration by considering the
observation, which is needed to be despeckled, as
the estimate generated at the previous iteration.

In most applications, the variances of pixels are
not known, and the true intensity image of
observed scene, which 1s required to estimate

them, are also not given. In this study, the
variance a§ was estimated using the average

value of observed intensities in the neighbor—
window related to the clique system:

A N2
X —[, E x

Oy = n y M= » (11)

w w

where {x,}is the observed process, n, is the

number of pixels in the neighbor-window, and

W, 1s the set of indices belonging to the window

centered at the (iy)th pixel. It is difficult to find a
correct textural component in the noisy
observation.

5. Adaptive Estimation with Boundary Cotrection

The MAP estimation using the neighbor
window would use wrong information from
adjacent regions for the pixels located in the
region close to or on the boundary. To
overcome this problem, the new method 1is
designed to use smaller sizes of the neighbor
window and lower values of the bonding
coefficients as the location of pixels 1s closer to
the boundary. Small windows can reduce the
possibility to involve the pixel values of adjacent
region with different characteristics, and the low
values of the coefficients can make the estimation
fit to the own value of the pixel more than the
values of neighbor pixels.

Homogeneity is mainly related to the local
information of an image and reflects how uniform
an image region is. Since a region including the
boundary is non-uniform, the homogeneity plays
important role to find the region close to or on the
boundary. Cheng et al. (2003) suggested a
homogeneity measurement which is in [0, 1], and
the larger the value, the more homogeneous the
region is. The measurement is computed using
edge value, standard deviation, entropy, and the
4th moment of intensity distribution for a given



window centered at the (i/)th pixel and its set of
pixel indices, W, .

Edge value measures the abrupt changes in gray
levels. Sobel operator is used to calculate the edge

value for the (i)th pixel. At each pixel location,
there are two components: s, ,corresponding to the

result from the row mask, and s, , the result from

the column mask. The magnitude of the gradient

at location (i) as the measurement (Gonzales and
Woods, 2002):

e,= Js2 st (12)

Standard deviation describes the dispersion
within a local region. It can be calculated as in Eq.

(11):
U(x _1&;“)2
syz‘[ Z”E“@ 7T (13)
nw

Entropy can also be used to describe the
distribution variation in a region (Dash and
Chatterji, 1991). Entropy of pixel (i,j)) can be
calculated as

ZP P, (14)

nnwkl

where P; is the probability of the ith gray level,
and L is the total number of gray levels in the
window.

The 4th moment of intensity distribution can be
used to describe the impulsiveness of the
distribution (Sterling and Pollack, 1968) which
can be computed through

~ \4
Z - (X, ~ 1)
paeW; and pg#ij ( i i
}/&, = i ‘ ’ (15)

n, —i

Homogeneity represents the uniformity. If the
region 1s perfectly uniform, the values of Egs. (12

— 15) are all 0. A uniformity measure can be
defined as

U= 1-e, ") x|1-s,079)]

16
N S B

2273 -

where
e, (W)= — T — s (W)= —
maXqu {epq} maxqu {Spq }
hs" Vii
hn(I/V;{)z . a}/n(szjU)z -
maXqu {hpq } maxqu {}/Pq }

The proposed scheme is designed to use smaller
sizes of the neighbor window related to the clique
system and lower values of » in Eq. (10) for the
adaptive iteration MAP estimation. The window
size of the uniformity measure must be larger than
one of the neighbor window.
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