• Title/Summary/Keyword: adaptive motion search

Search Result 119, Processing Time 0.02 seconds

Hierarchical Feature Based Block Motion Estimation for Ultrasound Image Sequences (초음파 영상을 위한 계층적 특징점 기반 블록 움직임 추출)

  • Kim, Baek-Sop;Shin, Seong-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.402-410
    • /
    • 2006
  • This paper presents a method for feature based block motion estimation that uses multi -resolution image sequences to obtain the panoramic images in the continuous ultrasound image sequences. In the conventional block motion estimation method, the centers of motion estimation blocks are set at the predetermined and equally spaced locations. This requires the large blocks to include at least one feature, which inevitably requires long estimation time. In this paper, we propose an adaptive method which locates the center of the motion estimation blocks at the feature points. This make it possible to reduce the block size while keeping the motion estimation accuracy The Harris-Stephen corner detector is used to get the feature points. The comer points tend to group together, which cause the error in the global motion estimation. In order to distribute the feature points as evenly as Possible, the image is firstly divided into regular subregions, and a strongest corner point is selected as a feature in each subregion. The ultrasound Images contain speckle patterns and noise. In order to reduce the noise artifact and reduce the computational time, the proposed method use the multi-resolution image sequences. The first algorithm estimates the motion in the smoothed low resolution image, and the estimated motion is prolongated to the next higher resolution image. By this way the size of search region can be reduced in the higher resolution image. Experiments were performed on three types of ultrasound image sequences. These were shown that the proposed method reduces both the computational time (from 77ms to 44ms) and the displaced frame difference (from 66.02 to 58.08).

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF

A Study on Adaptive Hexagonal Search Using Motion Activity (움직임 활동도를 이용한 적응형 육각 탐색에 관한 연구)

  • Kim, Myoung-Ho;Park, Kyoung-Wan;Oh, Young-Geol;Kwak, No-Yoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • 본 논문은 적응형 육각 탐색에 기반한 고속 블록 정합 알고리즘의 성능 개선에 관한 것으로, 이전 프레임의 움직임 활동도를 산출한 후, 웨이블렛 변환의 다단계 저주파 부영상들로 구성된 피라미드 계층 구조상에서 이 움직임 활동도에 따라 초기 움직임 탐색 계층을 적응적으로 선택하면서 적응형 육각 탐색에 기반한 계층적 블록 정합을 수행함으로써 움직임 벡터 추정의 고속화를 실현함과 동시에 국부 최소화를 효과적으로 경감시킬 수 있는 블록 정합 알고리즘을 제안함에 그 목적이 있다. 우선, 초기 연속된 두 프레임에 대해 적응형 육각 탐색을 이용하여 움직임 벡터를 추정한 후 움직임 활동도를 산출한다. 이후, 움직임 활동도가 낮은 경우, 다음 프레임의 움직임 벡터를 추정 시 최하위 계층에서 적응형 육각 탐색을 수행하고, 움직임 활용도가 높은 경우 피라미드 계층 구조상의 최상위 계층에서부터 상하 계층들 간에 움직임 탐색 영역을 중복시키면서 움직임 벡터를 추정한다. 제안된 방법의 타당성과 보편성을 검증하기 위해 서로 다른 움직임 특성을 갖는 복수의 영상 시퀀스들을 대상으로 움직임 보상 화질과 수렴시간 측면에서 그 성능을 평가 분석하였다. 제안된 방법에 따르면, 고속 움직임 탐색이 가능한 적응형 육각 탐색의 장점을 유지하면서도 움직임 활동도가 높은 영상에서 야기되는 국부최소문제를 효과적으로 억제시키고 있음을 확인할 수 있었다.

  • PDF

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

The FASCO BMA based on Motion Vector Prediction using Spatio-temporal Correlations (시공간적 상관성을 이용한 움직임 벡터 예측 기반의 FASCO 블럭 정합 알고리즘)

  • 정영훈;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1925-1938
    • /
    • 2001
  • In this paper, a new block-matching algorithm for standard video encoder is presented. The slice competition method is proposed as a new scheme, as opposed to a coarse-to-fine approach. The order of calculating the SAD(Sum of Absolute Difference) to fad the best matching block is changed from a raster order to a dispersed one. Based on this scheme, the increasing SAD curve during its calculation is more linear than that of other curves. Then, the candidates of low probability can be removed in the early stage of calculation. And new MV prediction technique with an adaptive search range scheme also assists the proposed block-matching algorithm. As a result, an average of 13% improvement in computational power is recorded by only the proposed MV prediction technique. Synthetically, the computational power is reduced by 3977∼77% than that of the conventional BMAs. The average MAD is always low in various sequences. The results are also very close to the MAD of the full search block-matching algorithm.

  • PDF

Face and Hand Tracking Algorithm for Sign Language Recognition (수화 인식을 위한 얼굴과 손 추적 알고리즘)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1071-1076
    • /
    • 2006
  • In this paper, we develop face and hand tracking for sign language recognition system. The system is divided into two stages; the initial and tracking stages. In initial stage, we use the skin feature to localize face and hands of signer. The ellipse model on CbCr space is constructed and used to detect skin color. After the skin regions have been segmented, face and hand blobs are defined by using size and facial feature with the assumption that the movement of face is less than that of hands in this signing scenario. In tracking stage, the motion estimation is applied only hand blobs, in which first and second derivative are used to compute the position of prediction of hands. We observed that there are errors in the value of tracking position between two consecutive frames in which velocity has changed abruptly. To improve the tracking performance, our proposed algorithm compensates the error of tracking position by using adaptive search area to re-compute the hand blobs. The experimental results indicate that our proposed method is able to decrease the prediction error up to 96.87% with negligible increase in computational complexity of up to 4%.

Markerless Motion Capture Algorithm for Lizard Biomimetics (소형 도마뱀 운동 분석을 위한 마커리스 모션 캡쳐 알고리즘)

  • Kim, Chang Hoi;Kim, Tae Won;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.136-143
    • /
    • 2013
  • In this paper, a algorithm to find joints of a small animal like a lizard from the multiple-view silhouette images is presented. The proposed algorithm is able to calculate the 3D coordinates so that the locomotion of the lizard is markerlessly reconstructed. The silhouette images of the lizard was obtained by a adaptive threshold algorithm. The skeleton image of the silhouette image was obtained by Zhang-Suen method. The back-bone line, head and tail point were detected with the A* search algorithm and the elimination of the ortho-diagonal connection algorithm. Shoulder joints and hip joints of a lizard were found by $3{\times}3$ masking of the thicked back-bone line. Foot points were obtained by morphology calculation. Finally elbow and knee joint were calculated by the ortho distance from the lines of foot points and shoulder/hip joint. The performance of the suggested algorithm was evaluated through the experiment of detecting joints of a small lizard.

Adaptive Frame Rate Up-Conversion Algorithm using the Neighbouring Pixel Information and Bilateral Motion Estimation (이웃하는 블록 정보와 양방향 움직임 예측을 이용한 적응적 프레임 보간 기법)

  • Oh, Hyeong-Chul;Lee, Joo-Hyun;Min, Chang-Ki;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.761-770
    • /
    • 2010
  • In this paper, we propose a new Frame Rate Up-Conversion (FRUC) scheme to increase the frame rate from a lower number into a higher one and enhance the decoded video quality at the decoder. The proposed algorithm utilizes the preliminary frames of forward and backward direction using bilateral prediction. In the process of the preliminary frames, an additional interpolation is performed for the occlusion area because if the calculated value of the block with reference frame if larger than the predetermine thresholdn the block is selected as the occlusion area. In order to interpolate the occlusion area, we perform re-search to obtain the osiomal block considerhe osiomnumber of available ne block consblock. The experimental results show that performance of the proposed algorithm has better PSNR and visual quality than the conventional methods.

Position Based Triangulation for High Performance Particle Based Fluid Simulation (위치 기반 삼각화를 이용한 입자 기반 유체 시뮬레이션 가속화 기법)

  • Hong, Manki;Im, Jaeho;Kim, Chang-Hun;Byun, Hae Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • This paper proposes a novel acceleration method for particle based large scale fluid simulation. Traditional particle-based fluid simulation has been implemented by interacting with physical quantities of neighbor particles through the Smoothed Particle Hydrodynamics(SPH) technique[1]. SPH method has the characteristic that there is no visible change compared to the computation amount in a part where the particle movement is small, such as a calm surface or inter-fluid. This becomes more prominent as the number of particles increases. Previous work has attempted to reduce the amount of spare computation by adaptively dividing each part of the fluid. In this paper, we propose a technique to calculate the motion of the entire particles by using the physical quantities of the near sampled particles by sampling the particles inside the fluid at regular intervals and using them as reference points of the fluid motion. We propose a technique to adaptively generate a triangle map based on the position of the sampled particles in order to efficiently search for nearby particles, and we have been able to interpolate the physical quantities of particles using the barycentric coordinate system. The proposed acceleration technique does not perform any additional correction for two classes of fluid particles. Our technique shows a large improvement in speed as the number of particles increases. The proposed technique also does not interfere with the fine movement of the fluid surface particles.