• Title/Summary/Keyword: adaptive mesh

Search Result 254, Processing Time 0.048 seconds

A mesh generation based on the pollution error (Pollution 오차를 이용한 요소생성에 관한 연구)

  • 유형선;편수범
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.46-53
    • /
    • 1999
  • In this paper, made was a study on a mesh generation method based on the pollution error. This method is designed for the control of the pollution error in any patch of elements of interest. It is a well-known fact that the pollution error estimates are much more than the local one. When the pollution error is significant, nothing can be said about the reliability of any estimator based on local computations in the patch. Reliable a posteriori error estimation is possible by controlling the pollution error in the patch through proper design of the mesh outside the patch. This design is possible by equally distributing the pollution error indicators over the mesh outside the patch. The mesh generated from the conventional feedback pollution-adaptive mesh generation algorithm needs many iterations. Therefore, the solution time is significant. But the remeshing scheme in the proposed method was used here. It was shown that the pollution-adaptive mesh improves the E.I., simply denoted as Effectivity Index, on the patch of interest, and the pollution error reduces less than the local error.

  • PDF

Adaptive Mesh Refinement Using Viscous Adjoint Method for Single- and Multi-Element Airfoil Analysis

  • Yamahara, Toru;Nakahashi, Kazuhiro;Kim, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.601-613
    • /
    • 2017
  • An adjoint-based error estimation and mesh adaptation study is conducted for two-dimensional viscous flows on unstructured hybrid meshes. The error in an integral output functional of interest is estimated by a dot product of the residual vector and adjoint variable vector. Regions for the mesh to be adapted are selected based on the amount of local error at each nodal point. Triangular cells in the adaptive regions are refined by regular refinement, and quadrangular cells near viscous walls are bisected accordingly. The present procedure is applied to single-element airfoils such as the RAE2822 at a transonic regime and a diamond-shaped airfoil at a supersonic regime. Then the 30P30N multi-element airfoil at a low subsonic regime with a high incidence angle (${\alpha}=21deg.$) is analyzed. The same level of prediction accuracy for lift and drag is achieved with much less mesh points than the uniform mesh refinement approach. The detailed procedure of the adjoint-based mesh refinement for the multi-element airfoil case show that the basic flow features around the airfoil should be resolved so that the adjoint method can accurately estimate an output error.

MA(Mesh Adaptive)-CBRP Algorithm for Wireless Mesh Network (Wireless Mesh Network를 위한 MA(Mesh Adaptive)-CBRP 알고리즘의 제안)

  • Kim, Sung-Joon;Cho, Gyu-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1607-1617
    • /
    • 2010
  • In this paper we propose MA-CBRP, mesh adaptive algorithm for wireless mesh networks. MA-CBRP is a hybrid algorithm based on ad-hoc CBRP protocol. In MA-CBRP, the mesh router periodically sends the ANN message as like Hello-message in CBRP. ANN message allows to all clients periodically store a route towards the mesh-router and renewal information in their routing cache. While CBRP periodically reply Hello-message, MA-CBRP does not reply to achieve less overhead. After receiving ANN message, mesh client send JOIN message to mesh router when the route towards mesh router changed. at the same time Register the entry to mesh router, it can achieve to reduce overhead of control the route and shorten the time to find route. consequently, MA-CBRP shows 7% reduced overhead and shortened time to find route than CBRP with regardless of clients number.

An Effective mesh smoothing technique for the mesh constructed by the mesh compression technique (격자압축을 이용해 구성된 격자의 효과적인 격자유연화 방법)

  • 홍진태;이석렬;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.331-334
    • /
    • 2003
  • In the finite element simulation of hot forging processes using hexahedron, remeshing of a flash is very difficult. The mesh compression method is a remeshing technique to construct an effective hexahedral mesh. However, because mesh is distorted during the compression procedure or the mesh compression method, mesh smoothing is necessary to improve the mesh Qualify. in this study, several geometric mesh smoothing techniques and a matrix norm optimization technique are applied and compared which is more adaptive to the mesh compression method.

  • PDF

Adaptive mesh generation by bubble packing method

  • Kim, Jeong-Hun;Kim, Hyun-Gyu;Lee, Byung-Chai;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.135-149
    • /
    • 2003
  • The bubble packing method is implemented for adaptive mesh generation in two and three dimensions. Bubbles on the boundary of a three-dimensional domain are controlled independently of the interior bubbles in the domain, and a modified octree technique is employed to place initial bubbles in the three-dimensional zone. Numerical comparisons are made with other mesh generation techniques to demonstrate the effectiveness of the present bubble packing scheme for two- and three-dimensional domains. It is shown that this bubble packing method provides a high quality of mesh and affordable control of mesh density as well.

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

DEVELOPMENT OF HIGH-ORDER ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR UNSTEADY FLOW SIMULATION (비정상 유동 해석을 위한 고차정확도 격자 적응 불연속 갤러킨 기법 개발)

  • Lee, H.D.;Choi, J.H.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.534-541
    • /
    • 2010
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin method has been developed for the numerical simulation of unsteady flows on unstructured meshes. A multi-level solution-adaptive mesh refinement/coarsening technique was adopted to enhance the resolution of numerical solutions efficiently by increasing mesh density in the high-gradient region. An acoustic wave scattering problem was investigated to assess the accuracy of the present discontinuous Galerkin solver, and a supersonic flow in a wind tunnel with a forward facing step was simulated by using the adaptive mesh refinement technique. It was shown that the present discontinuous Galerkin flow solver can capture unsteady flows including the propagation and scattering of the acoustic waves as well as the strong shock waves.

  • PDF

A Simple Posteriori Error Estimate Method For Adaptive Finite Element Mesh Generation Using Quadratic Shape Funtion (적응 유한 요소법을 위한 2차 형상 함수 오차 추정)

  • Kim, Hyeong-Seok;Choi, Hong-Soon;Choi, Kyung;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.87-90
    • /
    • 1988
  • This paper reports a simple posteriori error estimate method for adaptive finite element mesh generation using quadratic shape function especially for the magnetic field problems. The elements of quadratic shape function have more precise solution than those of linear shape function. Therefore, the difference of two solutions gives error quantity. The method uses the magnetic flux density error as a basis for refinement. This estimator is tested on two dimensional problem which has singular points. The estimated error is always under estimated but in same order as exact error, and this method is much simpler and more convenient than other methods. The result shows that the adaptive mesh gives even better rate of convergence in global error than the uniform mesh.

  • PDF

A Method of Error Estimate for Adaptive Finite Element Mesh Generation (적응 요소 분할을 위한 오차 추정에 관한 연구)

  • Choi, Hong-Soon;Choi, Kyung;Jung, Hyun-Kyo;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.141-145
    • /
    • 1988
  • This paper reports a new and simple posteriori error estimate method for adaptive finite element mesh genration especially for the magnetic field problems. To estimate local errors, we consider the interelement boundary conditions. Elements which violate much the conditions are considered to have great errors. Magnetic flux density errors are considered as a basis for refinement. This estimator is tested on two dimensional proplems with singular points. The estimated errors are always under estimated but in same order as exact errors, and this algorithm is much simpler and more convenient than other methods. The adaptive mesh gives much better rate of convergence in global errors than the uniform mesh.

  • PDF

Numerical Simulation of Corona Streamer Using Adaptive Mesh Generation and FEM-FCT Method (적응요소분할기법과 FEM-FCT를 이용한 코로나 스트리머 해석)

  • Min, Woong-Gee;Kim, Hyeong-Seok;Lee, Seok-Hyun;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2044-2046
    • /
    • 1999
  • In this paper, the propagation of corona streamer was simulated using finite element method(FEM) combined with Flux-Corrected Transport(FCT) algorithm. To obtain more effective grid distribution, the adaptive mesh generation scheme was also employed. The employed adaptive scheme can refine the mesh where needed. In addition, it is possible to coarsen the unnecessarily dense mesh. Two models were analyzed with proposed method. And the results are shown.

  • PDF