• 제목/요약/키워드: adaptive mechanisms

검색결과 175건 처리시간 0.028초

유식물 발달과정에서 브라시노스테로이드와 앱시스산 신호전달의 상호작용 연구 (Interplay between Brassinosteroid and ABA signaling during early seedling development)

  • 김혜민;홍정의;조용구;강권규;류호진
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.264-270
    • /
    • 2017
  • 식물의 유일한 활성 스테로이드 호르몬인 Brassinosteroid (BR)는 다양한 내재적 또는 외부 신호 전달 경로와의 통합적인 결합을 통해 식물의 생장 및 발달 과정에서 중요한 기능을 하는 것으로 알려져 있다. 최근 식물학 연구들은 종자의 발아와 초기 발달과정에서 BR과 ABA 사이의 필수적인 상호작용 메커니즘이 존재하고 있음을 보고하고 있다. 하지만 이들 두 호르몬의 중요한 신호전달 상호작용에 대한 분자 메커니즘은 거의 알려지지 않았다. 식물의 초기 발달과정에서 BR에 의해 매개되는 ABA 신호전달과의 기능학적, 생물학적 상호작용 네트워크를 이해하기 위해 Agilent Arabidopsis $4{\times}44K$ 올리고 칩을 사용하여 비교 전사체 분석을 수행하였다. ABA에 반응하지 않는 bes1-D 돌연변이체에서의 ABA 처리에 따른 다양한 유전자의 발현 패턴을 야생형 식물과 비교 분석하였다. 그 결과 발현의 변화가 발생하는 유전자(DEGs) 2,353개를 확인하였다. GO 분석을 통해 ABA 신호전달 및 대사에 관여하는 유전자들이 BR 신호전달 경로에 의해 하향 조절되는 것으로 확인되었다. 뿐만 아니라, BR 신호전달 경로는 다양한 비생물학적/생물학적 스트레스, 오옥신 및 ROS 등 다양한 신호전달 체계와 밀접하게 연관되어 있음을 확인하였다. 본 연구를 통해 BR 신호전달의 활성화는 ABA 신호전달에 관여하는 다양한 유전자들의 발현을 억제함을 확인하였다. 또한 본 연구는 다양한 신호 경로 사이의 상호작용이 다양한 환경요인에 대한 식물의 적응 반응에 중요하게 작용할 수 있음을 보여주고 있다.

인지무선네트워크를 위한 회전자 기반 적응형 보안프레임워크 설계 (Design of Adaptive Security Framework based on Carousel for Cognitive Radio Network)

  • 김현성
    • 전자공학회논문지
    • /
    • 제50권5호
    • /
    • pp.165-172
    • /
    • 2013
  • 최근 들어 IT 분야에 하나나 그 이상의 기술들이 하나의 장치에 결합되는 융합이 활발히 진행되고 있다. 특히, 기학급수적으로 증가하는 방송 및 통신 시스템으로 인해 무선 주파수 자원의 고갈 문제가 심각하게 대두되고 있다. 이와 같은 주파수 고갈과 비효율적인 주파수 사용 문제를 해결하기 위해 유휴 주파수를 합리적으로 이용하기 위한 융합기술인 인지무선 기술이 많은 관심을 받고 있다. 하지만 융합을 통해 개별적으로 제공되던 기존 서비스에 새로 개발된 기술들이 결합됨으로서 기존에는 존재하지 않았던 새로운 보안 문제들을 야기할 수 있다. 본 논문의 목적은 통신 융합응용 기술로서 인지무선네트워크를 위한 회전자 기반 적응형 보안프레임워크를 제안한다. 제안한 적응형 보안프레임워크는 위치정보에 기반한 회전자를 프라이버시 및 다양한 보안을 제공하기 위한 보안 기법들에 필요한 공유키 설정을 위한 기초로 이용한다. 본 논문에서 제안한 적응형 보안프레임워크는 인지무선네트워크 표준들을 포함한 다양한 융합응용의 보안 기반 구조로 활용될 수 있을 것이다.

Local Dynamic Stability Associated with Load Carrying

  • Liu, Jian;Lockhart, Thurmon E.
    • Safety and Health at Work
    • /
    • 제4권1호
    • /
    • pp.46-51
    • /
    • 2013
  • Objectives: Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods: Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results: Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

Recent Advances of Vaccine Adjuvants for Infectious Diseases

  • Lee, Sujin;Nguyen, Minh Trang
    • IMMUNE NETWORK
    • /
    • 제15권2호
    • /
    • pp.51-57
    • /
    • 2015
  • Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.

Global Mobility Management Scheme for Seamless Mobile Multicasting Service Support in PMIPv6 Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jong-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.637-658
    • /
    • 2015
  • The development of multimedia applications has followed the development of high-speed networks. By improving the performance of mobile devices, it is possible to provide high-transfer-speed broadband and seamless mobile multicasting services between indoor and outdoor environments. Multicasting services support efficient group communications. However, mobile multicasting services have two constraints: tunnel convergence and handoff latency. In order to solve these problems, many protocols and handoff methods have been studied. In this paper, we propose inter local mobility anchor (inter-LMA) optimized handoff model for mobile multicasting services in proxy mobility IPv6 based (PMIPv6-based) networks. The proposed model removes the tunnel convergence issue and reduces the router processing costs. Further, it the proposed model allows for the execution of fast handoff operations with adaptive transmission mechanisms. In addition, the proposed scheme exhibits low packet delivery costs and handoff latency in comparison with existing schemes and ensures fast handoff when moving the inter-LMA domain.

Effects of acute di-n-butyl phthalate administration on oxidative stress parameters

  • Choi, Dal-Woong;Kim, Young-Hwan;Sohn, Jong-Ryeul;Moon, Kyung-Hwan;Byeon, Sang-Hoon
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2004년도 International Conference Global Environmental Problems and their Health Consequences
    • /
    • pp.178-181
    • /
    • 2004
  • Di-n-butyl phthalate (DBP) is used extensively in the plastic industry and has been known as an environmental hormone (endocrine disruptor). Present study was undertaken to examine whether DBP can induce oxidative stress in mice. In this study, oxidative stress was measured in terms of the modification of lipid peroxidation and gamma-glutamyltranspeptidase (${\gamma}-GT$) activity. The activity of ${\gamma}-GT$, the level of lipid peroxidation and serum toxicity index were measured in male ICR mice after treatment with DBP (5 g/kg, po). Administration of DBP was found to significantly increase the level of lipid peroxidation approximately 2 fold in liver. The activity of ${\gamma}-GT$ in the liver of DBP-exposed animals was also increased approximately 2.5 fold. However, DBP did not alter the parameters for hepatotoxicity and nephrotoxicity such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine. These results indicate that DBP can induce oxidative stress in mice. The ${\gamma}-GT$ activity is considered to be increased as one of the adaptive defense mechanisms to oxidative stress induced by DBP.

  • PDF

Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases

  • Kim, Seung Hyun;Oh, Ki-Wook;Jin, Hee Kyung;Bae, Jae-Sung
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.545-546
    • /
    • 2018
  • With emerging evidence on the importance of non-cell autonomous toxicity in neurodegenerative diseases, therapeutic strategies targeting modulation of key immune cells. including microglia and Treg cells, have been designed for treatment of ALS and other neurodegenerative diseases. Strategy switching the patient's environment from a pro-inflammatory toxic to an anti-inflammatory, and neuroprotective condition, could be potential therapy for neurodegenerative diseases. Mesenchymal stem cells (MSCs) regulate innate and adaptive immune cells, through release of soluble factors such as $TGF-{\beta}$ and elevation of regulatory T cells (Tregs) and T helper-2 cells (Th2 cells), would play important roles, in the neuroprotective effect on motor neuronal cell death mechanisms in ALS. Single cycle of repeated intrathecal injections of BM-MSCs demonstrated a clinical benefit lasting at least 6 months, with safety, in ALS patients. Cytokine profiles of CSF provided evidence that BM-MSCs, have a role in switching from pro-inflammatory to anti-inflammatory conditions. Inverse correlation of $TGF-{\beta}1$ and MCP-1 levels, could be a potential biomarker to responsiveness. Thus, additional cycles of BM-MSC treatment are required, to confirm long-term efficacy and safety.

Impact of mesenchymal stem cell senescence on inflammaging

  • Lee, Byung-Chul;Yu, Kyung-Rok
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.65-73
    • /
    • 2020
  • Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.

가속 방사광을 활용한 Fe함유 Al-Si-Cu 주조용 합금의 응고과정 실시간 관찰 및 분석 (Real-time Observation and Analysis of Solidification Sequence of Fe-Rich Al-Si-Cu Casting Alloy by Synchrotron X-ray Radiography)

  • 김봉환;이상환;야스다 히데유키;이상목
    • 한국주조공학회지
    • /
    • 제30권3호
    • /
    • pp.100-110
    • /
    • 2010
  • The solidification sequence and formation of intermetallic phase of Fe-rich Al-Si-Cu alloy were investigated by using real-time imaging of synchrotron X-ray radiation. Effects of cooling rate during uni-directional solidification on the resultant solidification behavior was also studied in a specially constructed vacuum chamber in the SPring-8 facility. The series of radiographic images were complementarily analyzed with conventional analysis of OM and SEM/EDX for phase identification. Detailed solidification sequence and formation mechanisms of various phases were discussed based on real-time image analysis. The growth rates of $\alpha$-AlFeMnSi and ${\beta}-Al_5FeSi$ were measured in order to understand the growth behavior of each phase. It is suggested that real-time imaging technique can be a powerful tool for the precise understanding of solidification behavior of various industrial materials.

영구자석 동기전동기의 강인 비선형 속도제어기의 설계 및 DSP에 기반한 구현 (Design and DSP-based Implementation of Robust Nonlinear Speed Control of Permanent Magnet Synchronous Motor)

  • 백인철;김경화;윤명중
    • 전력전자학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-12
    • /
    • 1999
  • 파라미터 변동이나 외란에 강인한 영구자석 동기전동기의 궤환선형화 속도제어기를 설계하고 DSP를 이용하여 실험 시스템을 구현하였다. 시스템의 상태변수에 비하여 매우 느리게 변화하는 파라미터의 추정을 위하여 MRAS를 이용한 추정방법이 MIT rule을 이용하여 유도되었다. 외란이나 시스템의 상태변수 정도의 변화를 보이는 피라미터에 대하여는 그영향이 고려된 준-선형화 비간섭 모델이 유도되었다. 이 모델을 이용하여 제어시스템의 강인성을 얻고자 경계층을 가지는 Sliding mode 제어기를 설계하고 PD 제어기를 적용한 기존의 제어기와 비교하였다. 제안된 제어 방법의 유용성은 Simulation과 DSP에 기반한 실험 시스템을 통하여 검증하였다.