• Title/Summary/Keyword: adaptive extraction

Search Result 280, Processing Time 0.02 seconds

Extraction of Building Boundary on Aerial Image Using Segmentation and Overlaying Algorithm (분할과 중첩 기법을 이용한 항공 사진 상의 빌딩 경계 추출)

  • Kim, Yong-Min;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Feature Extraction (적응적 특징추출을 이용한 Radial Basis Function 신경망의 성능개선)

  • 조용현
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.253-262
    • /
    • 2000
  • This paper proposes a new RBF neural network that determines the number and the center of hidden neurons based on the adaptive feature extraction for the input data. The principal component analysis is applied for extracting adaptively the features by reducing the dimension of the given input data. It can simultaneously achieve a superior property of both the principal component analysis by mapping input data into set of statistically independent features and the RBF neural networks. The proposed neural networks has been applied to classify the 200 breast cancer databases by 2-class. The simulation results shows that the proposed neural networks has better performances of the learning time and the classification for test data, in comparison with those using the k-means clustering algorithm. And it is affected less than the k-means clustering algorithm by the initial weight setting and the scope of the smoothing factor.

  • PDF

Real-time Object Tracking using Adaptive Background Image in Video (동영상에서 적응적 배경영상을 이용한 실시간 객체 추적)

  • 최내원;지정규
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.409-418
    • /
    • 2003
  • Object tracking in video is one of subject that computer vision and several practical application field have interest in several years. This paper proposes real time object tracking and face region extraction method that can be applied to security and supervisory system field. For this, in limited environment that camera is fixed and there is seldom change of background image, proposed method detects position of object and traces motion using difference between input image and background image. The system creates adaptive background image and extracts pixels in object using line scan method for more stable object extraction. The real time object tracking is possible through establishment of MBR(Minimum Bounding Rectangle) using extracted pixels. Also, effectiveness for security and supervisory system is improved due to extract face region in established MBR. And through an experiment, the system shows fast real time object tracking under limited environment.

  • PDF

Web-based Video Monitoring System on Real Time using Object Extraction and Tracking out (객체 추출 및 추적을 이용한 실시간 웹기반 영상감시 시스템)

  • 박재표;이광형;이종희;전문석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.85-94
    • /
    • 2004
  • Object tracking in a real time image is one of interesting subjects in computer vision and many Practical application fields during the past couple of years. But sometimes existing systems cannot find all objects by recognizing background noise as object. This paper proposes a method of object detection and tracking using adaptive background image in real time. To detect object which is not influenced by illumination and to remove noise in background image, this system generates adaptive background image by real time background image updating. This system detects object using the difference between background image and input image from camera. After setting up Minimum Bounding Rectangle(MBR) using the internal point of detected object, the system tracks object through this MBR In addition, this paper evaluates the test result about performance of proposed method as compared with existing tracking algorithm.

Shooting Distance Adaptive Pore Extraction for Skin Condition Estimation (피부 상태 추정을 위한 촬영 거리에 적응적인 모공 검출 연구)

  • Lee, Kang-Kyu;Yoo, Jun-Sang;Bae, Jin-Gon;Bae, Ji-Sang;Kim, Jong-Ok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.106-114
    • /
    • 2015
  • Nowadays, cameras embedded in smartphones can take high resolution photographs that can be used to analyze skin conditions without using specialized equipments. In shooting photographs with a smartphone, it is difficult to maintain a uniform shooting distance. Therefore, it is essential to adapt a skin analysis method to the shooting distance. In this paper, we focus on a pore detection algorithm that is adaptive to the camera distance. We develop a relationship model between the shooting distance and the appropriate size of the pore detection mask. In addition, we propose a method to estimate the normalized pore size (i. e. pore size at a standard shooting distance). We conducted experiments on skin images taken from different shooting distances. It was verified that the proposed method can achieve more accurate pore detection result, close to those from skin images taken at a standard shooting distance.

A Study on Car License Plate Extraction using ACL Algorithm (ACL 알고리즘을 이용한 자동차 번호판 영역 추출에 대한 연구)

  • Jang, Seung-Ju;Shin, Byoung-Chul
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1113-1118
    • /
    • 2002
  • In recognition system of the car license plate, the most important is to extract the image of the license plate from a car image. In this paper, we use ACL (Adaptive Color Luminance) algorithm to extract the license plate image from a car image. The ACL algorithm that uses color and luminance information of a car image is used to extract the image of the license plate. In this paper, color, luminance and other related information of a car image are used to extract the image of the license plate from that of a car. In this reason, we call it the ACL algorithm. The ACL algorithm uses color, luminance information and other related information of a license plate. These informations are avaliable to exact the image of the license plate. The rate of extracting the image of the license plate from a car is 97%. The experimental result of the ACL algorithm for the character region is 92%.

A novel method to aging state recognition of viscoelastic sandwich structures

  • Qu, Jinxiu;Zhang, Zhousuo;Luo, Xue;Li, Bing;Wen, Jinpeng
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1183-1210
    • /
    • 2016
  • Viscoelastic sandwich structures (VSSs) are widely used in mechanical equipment, but in the service process, they always suffer from aging which affect the whole performance of equipment. Therefore, aging state recognition of VSSs is significant to monitor structural state and ensure the reliability of equipment. However, non-stationary vibration response signals and weak state change characteristics make this task challenging. This paper proposes a novel method for this task based on adaptive second generation wavelet packet transform (ASGWPT) and multiwavelet support vector machine (MWSVM). For obtaining sensitive feature parameters to different structural aging states, the ASGWPT, its wavelet function can adaptively match the frequency spectrum characteristics of inspected vibration response signal, is developed to process the vibration response signals for energy feature extraction. With the aim to improve the classification performance of SVM, based on the kernel method of SVM and multiwavelet theory, multiwavelet kernel functions are constructed, and then MWSVM is developed to classify the different aging states. In order to demonstrate the effectiveness of the proposed method, different aging states of a VSS are created through the hot oxygen accelerated aging of viscoelastic material. The application results show that the proposed method can accurately and automatically recognize the different structural aging states and act as a promising approach to aging state recognition of VSSs. Furthermore, the capability of ASGWPT in processing the vibration response signals for feature extraction is validated by the comparisons with conventional second generation wavelet packet transform, and the performance of MWSVM in classifying the structural aging states is validated by the comparisons with traditional wavelet support vector machine.

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Implementation of the Container ISO Code Recognition System for Real-Time Processing (실시간 처리를 위한 컨테이너 ISO코드 인식시스템의 구현)

  • Choi Tae-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1478-1489
    • /
    • 2006
  • This paper describes system to extract ISO codes in container image. A container ISO code recognition system for real-time processing is made of 5 core parts which are container ISO code detection and image acquisition, ISO code region extraction, individual character extraction, character recognition and database. Among them, the accuracy of ISO code extraction can affect significantly the accuracy of system recognition rate, and also the more exact extraction of ISO code is required in various weather and environment conditions. The proposed system produces binary of the ISO code's template lesions using an adaptive thresholding, extracts candidate regions containing distribution of ISO code, and recognizes ISO codes as detecting a final region through the verifications by using character distribution characteristics of ISO code among the extracted candidates. Experimental results reveal that ISO codes can be efficiently extracted by the proposed method.

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.