International Journal of Computer Science & Network Security
/
제24권1호
/
pp.119-126
/
2024
Disease caused by the coronavirus (COVID-19) is sweeping the globe. There are numerous methods for identifying this disease using a chest imaging. Computerized Tomography (CT) chest scans are used in this study to detect COVID-19 disease using a pretrain Convolutional Neural Network (CNN) ResNet50. This model is based on image dataset taken from two hospitals and used to identify Covid-19 illnesses. The pre-train CNN (ResNet50) architecture was used for feature extraction, and then fully connected layers were used for classification, yielding 97%, 96%, 96%, 96% for accuracy, precision, recall, and F1-score, respectively. When combining the feature extraction techniques with the Back Propagation Neural Network (BPNN), it produced accuracy, precision, recall, and F1-scores of 92.5%, 83%, 92%, and 87.3%. In our suggested approach, we use a preprocessing phase to improve accuracy. The image was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, which was followed by cropping the image before feature extraction with ResNet50. Finally, a fully connected layer was added for classification, with results of 99.1%, 98.7%, 99%, 98.8% in terms of accuracy, precision, recall, and F1-score.
본 논문에서는 수 만개이상의 미지수를 필요로 하는 복잡한 3차원 구조에서의 정전용량 추출을 위한 고속화 알고리즘(Fast mutilpole method)과 결합한 효과적인 적응 삼각요소 분할법(Adaptive triangular mesh refinement algorithm)을 제안하였다. 요소세분화과정은 초기요소로 전하의 분포를 구하고, 전하밀도가 높은 영역에서의 요소세분화를 수행하여 이루어진다. 제안된 방법을 이용하여 많은 미지수를 필요로 하는 IC packaging 구조에서의 정전용량을 추출하였다.
장문인식은 손바닥 중앙부에 나타난 손금과 주름의 패턴을 이용하여 개인을 식별하는 것으로, 효과적인 장문인식을 위해서는 이러한 패턴이 나타나는 관심영역(ROI: region of interest)에 대한 안정적인 추출이 필요하다. 본 논문에서는 윤곽선의 형태 정보를 토대로 적응적으로 굴곡점의 위치를 찾아내고 이로부터 ROI를 추출하는 방법을 제안한다. 제안된 방법의 성능을 확인하기 위하여 유도 막대가 없는 자연스런 장문획득 장치에 의해 수집된 장문영상을 대상으로 실험을 수행하였다. 실험결과 제안된 방법은 손의 위치 변화나 회전에 무관하게 장문영상으로부터 안정적으로 ROI를 추출함을 확인할 수 있었다.
In this study, the patent trends for noise barrier and noise reducing device have been analyzed, for the development of adaptive noise barrier according to the transmission characteristics of railway noise. Using patent search engine, keyword searching for patents after 1980 in Korea was performed. The first 667 patents details were reviewed for the extraction core(ie, key) patents. From this review, finally 70 patents were built as DB. From this analysis of core patents, system requirements for development of noise reducing device were obtained.
자동차 번호판 일련번호를 인식하는 과정에서 차량이미지는 예상치 못할 정도로 복합적인 문제를 많이 포함하고 있다. 번호판 주위환경에서의 다양한 조건에 따른 적응성을 가지고 빠근 추출을 성공적으로 수행하는 것은 이 분야에서 매우 중요한 문제이다. 본 논문은 이러한 문제를 해결할 수 있는 자동차 번호판 일련번호 추출에 관한 연구로서, 레이블링기법과 적응성 신경망을 활성화시켜 일련번호를 추출하는 알고리즘을 제안하므로써 자동차 번호판 주위환경의 다양한 조건과 복합적 문제를 빠른 시간에 적응하여 해결을 할 수 있도록 하였다.
본 논문에서는 피부색 정의를 이용한 적응적 얼굴 영역 추출 알고리즘을 제안한다. 얼굴 영역 추출시 피부색 정보는 유용하게 이용되어 왔으나 피부색을 나타내는 문턱값에 매우 민감한 단점이 있다. 논문에서는 이를 개선하고자 먼저 후보 피부색 정보를 이용한 다음 전체 화소수와 추출된 화소수의 비에 따라 적응적으로 얼굴 영역을 추출하였다 인터넷 및 다양한 환경에서 획득된 영상에 대한 실험 결과 제안한 알고리즘은 얼굴 인식 과정의 얼굴 영역 추출 단계에서 정확한 얼굴 영역을 추출할 수 있음을 알 수 있었다
얼굴 분석은 얼굴 인식 머리 움직임과 얼굴 표정을 이용한 인간과 컴퓨터사이의 인터페이스, 모델 기반 코딩, 가상현실 등 많은 응용 분야에서 유용하게 활용된다. 이러한 응용 분야에서는 얼굴의 특징점들을 정확하게 추출해야 한다. 본 논문에서는 눈, 눈썹, 입술의 코너와 같은 얼굴 특징을 자동으로 추출하는 방법을 제안한다. 먼저, 입력 영상으로부터 AdaBoost 기반의 객체 검출 기법을 이용하여 얼굴 영역을 추출한다. 그 다음에는 계곡 에너지. 명도 에너지, 경계선 에너지의 세 가지 특징 에너지를 계산하여 결합한다. 구해진 특징 에너지 영상에 대하여 에너지 값이 큰 수평 방향향의 사각형을 탐색함으로써 특징 영역을 검출한다. 마지막으로 특징 영역의 가장자리 부분에서 코너 검출 알고리즘을 적용함으로써 눈, 눈썹, 입술의 코너를 검출한다. 본 논문에서 제안된 얼굴 특징 추출 방법은 세 가지의 특징 에너지를 결합하여 사용하고 계곡 에너지와 명도 에너지의 계산이 조명 변화에 적응적인 특성을 갖도록 함으로써, 다양한 환경 조건하에서 견고하게 얼굴 특징을 추출할 수 있다.
자동차 번호판 인식 시스템에서 가장 중요한 요소가 자동차 이미지 영역에서 번호판 영역을 정확히 검출해 내는 것이다. 자동차 이미지에서 번호판 영역을 추출하기 위한 방법으로 색상과 밝기 정보와 자동차 번호판의 가로 세로 비율 등 번호판을 인식할 수 있는 정보를 혼용한 ACL 알고리즘을 제안한다. ACL 알고리즘을 사용함으로써 기존의 색상 정보나 명암 정보만을 이용할 경우 자동차 번호판 영역 추출이 잘되지 않는 문제를 해소시켜 준다. 본 논문에서 제안하는 ACL 알고리즘은 자동차 이미지에서 번호판 영역을 추출할 경우 색상 정보와 명암정보, 기타 자동차 번호판을 판단할 수 있는 정보를 모두 이용한다. ACL 알고리즘을 이용하여 번호판 추출 실험을 한 결과 97%의 추출률을 보였다. ACL 알고리즘을 이용하여 추출된 번호판을 이용하여 문자 영역, 문자 인식을 한 결과 92%의 결과를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권12호
/
pp.4292-4307
/
2021
For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.
최근 다양한 형태와 종류로 영상 콘텐츠를 가공하고 사용하는 응용분야가 급격히 증가하고 있다. 영상 콘텐츠는 고부가가치의 콘텐츠이므로 영상 콘텐츠의 제작 및 사용이 활성화되기 위해서는 이 콘텐츠의 지적재산권이 보호되어야 하며, 현재까지 그 방법으로 가장 널리 연구되고 있는 것이 디지털 워터마킹이다. 이에 본 논문에서는 딥 러닝 기반의 워터마크 삽입 및 추출 네트워크를 제안한다. 제안하는 방법은 호스트 영상의 비가시성(invisibility)을 보존하면서 악의적/비악의적 공격에 워터마크의 강인성(robustness)를 극대화하는 방법이다. 이 네트워크는 워터마크를 호스트 영상과 똑같은 해상도를 갖도록 변화시키는 전처리 네트워크, 변화된 호스트 영상과 워터마크 정보를 3차원적으로 정합하여 호스트 영상의 해상도를 유지하면서 워터마크 데이터를 삽입하는 네트워크, 그리고 해상도를 줄이며 워터마크를 추출하는 네트워크로 구성된다. 이 네트워크는 다양한 워터마크 영상과 다양한 해상도를 가진 호스트 영상에 대해 다양한 화소값 변경공격과 기하학적 공격을 실험하여 제안하는 방법의 비가시성과 강인성을 검증하고, 이 방법이 범용적이고 실용적임을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.