• Title/Summary/Keyword: adaptive extraction

Search Result 280, Processing Time 0.023 seconds

Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks (신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계)

  • Kim, Kyoung-Min;Lyou, Kyoung;Jung, Woo-Yong;Park, Gwi-Tae;Park, Joong-Jo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

Solving Optimization Problems by Using the Schema Extraction Method (스키마 추출 기법을 이용한 최적화 문제 해결)

  • Cho, Yong-Gun;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.278-278
    • /
    • 2000
  • In this paper, we introduce a new genetic reordering operator based on the concept of schema to solve optimization problems such as the Traveling Salesman Problem(TSP) and maximizing or minimizing functions. In particular, because TSP is a well-known combinational optimization problem andbelongs to a NP-complete problem, there is huge solution space to be searched. For robustness to local minima, the operator separates selected strings into two parts to reduce the destructive probability of good building blocks. And it applies inversion to the schema part to prevent the premature convergence. At the same time, it searches new spaces of solutions. Additionally, the non-schema part is applied to inversion for robustness to local minima. By doing so, we can preserve diversity of the distributions in population and make GA be adaptive to the dynamic environment.

  • PDF

Extraction and Shape Description of Feature Region on Ocular Fundus Fluorescein Angiogram (형광 안저화상에 관한 특수 영역의 유출 및 모양)

  • Go, Chang-Rim;Ha, Yeong-Ho;Kim, Su-Jung
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1987
  • An image feature extraction method for the low contrast fluoresceln angiogram in dlabetes was studied. To obtain effective image segmentation, an adaptive local difference image is generated and relaxation process are applied to this difference Image. By the use of distance transformed data with segmented image, shape and location of feature regions were obtained. It was shown that the location and shape descriptions of Impaired blood vessel networks and retinal regions are can he utilized for the diagnosis of diabetes and other disease.

  • PDF

Convergence Control of Moving Object using Opto-Digital Algorithm in the 3D Robot Vision System

  • Ko, Jung-Hwan;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, a new target extraction algorithm is proposed, in which the coordinates of target are obtained adaptively by using the difference image information and the optical BPEJTC(binary phase extraction joint transform correlator) with which the target object can be segmented from the input image and background noises are removed in the stereo vision system. First, the proposed algorithm extracts the target object by removing the background noises through the difference image information of the sequential left images and then controlls the pan/tilt and convergence angle of the stereo camera by using the coordinates of the target position obtained from the optical BPEJTC between the extracted target image and the input image. From some experimental results, it is found that the proposed algorithm can extract the target object from the input image with background noises and then, effectively track the target object in real time. Finally, a possibility of implementation of the adaptive stereo object tracking system by using the proposed algorithm is also suggested.

An Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model

  • Yoon, Seok-Hwan;Min, Joonyoung
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.621-632
    • /
    • 2013
  • The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the earliest time possible in a forest. GMMs are usually addressed by making the model adaptive so that its parameters can track changing illuminations and by making the model more complex so that it can represent multimodal backgrounds more accurately for smoke plume segmentation in the forest. Also, in this paper, we suggest a way to classify the smoke plumes via a feature extraction using HSL(Hue, Saturation and Lightness or Luminanace) color space analysis.

A Study on Adaptive Information Hiding Technique for Copyright Protection of Digital Images (디지털 영상물의 저작권 보호를 위한 적응적 정보 은닉 기술에 관한 연구)

  • Park, Kang-Seo;Chung, Tae-Yun;Oh, Sang-Rok;Park, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2427-2429
    • /
    • 1998
  • Digital watermarking is the techinque which embeds the invisible signal into multimedia data such as audio, video, images, for copyright protection, including owner identification and copy control information. This paper proposes a new watermark embedding and extraction technique by extending the direct sequence spread spectrum technique. The proposed technique approximates the frequency component of pixels in spatial domain by using Laplacian mask and adaptively embeds the watermark considering the HVS to reduce the degradation of Image. In watermark extraction process, the proposed technique strengthens the high frequency components of image and extracts the watermark by demodulation. All this processes are performed in spatial domain to reduce the processing time.

  • PDF

Colored Object Extraction using Fuzzy Neural Network (퍼지 신경회로망을 이용한 칼라 물체 추출)

  • Kim, Yong-Soo;Chung, Seung-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.226-231
    • /
    • 2007
  • This paper presents a method of colored object extraction from an image using the fuzzy neural network. Fuzzy neural network divides an image into two clusters. It extracts the prototypes of Cb and Cr of object and background by controlling the vigilance parameter. The proposed method extracted object regardless of the position, the size, and the intensity of object. We compared the performance of the proposed method with that of the method of using subjective threshold value. And, we compared the performance of the proposed method with that of the method of using subjective threshold value by using several images with added noises.

A Study on Fast Extraction of Endmembers from Hyperspectral Image Data (초분광 영상자료의 Endmember 추출 속도 향상에 관한 연구)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.347-355
    • /
    • 2012
  • A fast algorithm for endmember extraction is proposed in this study which extracts min. and max. pixels from each band after MNF transform as candidate pixels for endmember. This method finds endmembers not from the entire image pixels but only from the previously extracted candidate pixels. The experimental results by N-FINDR using a simulated hyperspectral image data and AVIRIS Cuprite image data showed that the proposed fast algorithm extracts the same endmembers with the conventional methods. More studies on the effect of noise and more adaptive criteria in extracting candidate pixels are expected to increase the usability of this method for more fast and efficient analysis of hyperspectral image data.

Human Face Recognition System Based on Skin Color Informations and Geometrical Feature Analysis of Face (피부색 정보와 얼굴의 구조적 특징 분석을 통한 얼굴 영상 인식 시스템)

  • Lee Eung- Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2000
  • In this paper, we propose the face image recognition algorithm using skin color information, face region features such as eye, nose, and mouse, etc., and geometrical features of chin line. In the proposed algorithm, we used the intensity as well as skin color information in the HSI color coordinate which is similar to human eye system. The experimental results of proposed method shows improved extraction quality of face and provides adaptive extraction methods for the races. And also, we used chin line information as well as geometrical features of face such as eye, nose, mouse information for the improvement of face recognition quality, Experimental results shows the more improved recognition as well as extraction quality than conventional methods.

  • PDF

Skin Region Extraction Using Color Information and Skin-Color Model (컬러 정보와 피부색 모델을 이용한 피부 영역 검출)

  • Park, Sung-Wook;Park, Jong-Kwan;Park, Jong-Wook
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.60-67
    • /
    • 2008
  • Skin color is a very important information for an automatic face recognition. In this paper, we proposed a skin region extraction method using color information and skin color model. We use the adaptive lighting compensation technique for improved performance of skin region extraction. Also, using an preprocessing filter, normally large areas of easily distinct non skin pixels, are eliminated from further processing. And we use the modified ST color space, where undesired effects are reduced and the skin color distribution fits better than others color space. Experimental results show that the proposed method has better performance than the conventional methods, and reduces processing time by $35{\sim}40%$ on average.