• 제목/요약/키워드: adaptive evolutionary computation

검색결과 24건 처리시간 0.026초

종 분화 진화 알고리즘을 이용한 안정된 베이지안 네트워크 앙상블 구축 (Construction of Robust Bayesian Network Ensemble using a Speciated Evolutionary Algorithm)

  • 유지오;김경중;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권12호
    • /
    • pp.1569-1580
    • /
    • 2004
  • 베이지안 네트워크는 불확실한 상황을 모델링하기 위한 확률 기반의 모델로서 확실한 수학적 토대를 가지고 있다. 베이지안 네트워크의 구조론 자동 학습하기 위한 연구가 많이 있었고, 최근에는 진화 알고리즘을 이용한 연구가 많이 진행되고 있다. 그러나 대부분은 마지막 세대의 가장 좋은 개체만을 이용하고 있다. 시스템이 요구하는 다양한 요구 조건을 하나의 적합도 평가 수식으로 나타내기 어렵기 때문에, 마지막 세대의 가장 좋은 개체는 종종 편향되거나 변화하는 환경에 덜 적응적일 수 있다. 본 논문에서는 적합도 공유 방법으로 다양한 베이지안 네트워크를 생성하고, 이를 베이즈 규칙을 통해 결합하여 변화하는 환경에 적응적인 추론 모델을 구축할 수 있는 방법을 제안한다. 성능 평가를 위해 ASIA와 ALARM 네트워크에서 인공적으로 생성한 데이타를 이용한 구조 학습 및 추론 실험을 수행하였다. 다양한 조건에서 학습된 네트워크를 실험한 결과, 제안한 방법이 변화하는 환경에서 더욱 강건하고 적응적인 모델을 생성할 수 있음을 알 수 있었다.

코시 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용한 진화 프로그래밍 (Evolutionary Programming of Applying Estimated Scale Parameters of the Cauchy Distribution to the Mutation Operation)

  • 이창용
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권9호
    • /
    • pp.694-705
    • /
    • 2010
  • 진화 프로그래밍은 실수형 최적화 문제에 널리 사용되는 알고리즘으로 돌연변이 연산이 중요한 연산이다. 일반적으로 돌연변이 연산은 확률 분포와 이에 따른 매개변수를 사용하여 변수값을 변화시키는데, 이 때 매개변수 역시 돌연변이 연산의 대상이 됨으로 이를 위한 또 다른 매개변수가 필요하다. 그러나 최적의 매개변수 값은 주어진 문제에 전적으로 의존하기 때문에 매개변수 개수가 많은 경우 매개변수값들에 대한 최적 조합을 찾기 어렵다. 이러한 문제를 부분적으로나마 해결하기 위하여 본 논문에서는 변수의 돌연변이 연산을 위한 매개변수를 자기 적응적 관점에서 이론적으로 추정한 돌연변이 연산을 제안하였다. 제안한 알고리즘에서는 코시 확률 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용함으로 축척 매개변수에 대한 돌연변이 연산이 필요하지 않다는 장점이 있다. 제안한 알고리즘을 벤치마킹 문제에 적용한 실험 결과를 통해 볼 때, 최적값 측면에서는 제안한 알고리즘의 상대적 우수성은 벤치마킹 문제에 의존하였으나 계산 시간 측면에서는 모든 벤치마킹 문제에 대하여 제안한 알고리즘이 우수하였다.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

유전자 알고리즘에서 연산자 확률 자율조정 (Self-tuning of Operator Probabilities in Genetic Algorithms)

  • Jung, Sung-Hoon
    • 전자공학회논문지CI
    • /
    • 제37권5호
    • /
    • pp.29-44
    • /
    • 2000
  • 진화연산 분야에서 연산자 확률을 조정하는 것은 주 연구분야 중 하나이다. 그 이유는 적당한 연산자 확률을 설정하는 것이 매우 지루하고 어려울 뿐만 아니라 유전자 알고리즘의 성능향상에 매우 중요하기 때문이다. 많은 연구자들이 연산자 확률을 설정하거나 조절하는 여러가지 알고리즘을 소개했다. 그러나, 실험결과는 그리 만족할 만한 것이 아니었다. 더군다나, Tuson은 그의 논문에서 “연산자 조정은 반드시 좋은 것만은 아니다”라고 주장하였다[¹²]. 본 논문에서 우리는 유전자 알고리즘에서 연산자 확률을 자율조정하는 새로운 방법을 제안한다. 제안한 알고리즘을 4개의 함수와 한 개의 조합최적화 문제에 적용하여 테스트하고 일정한 유전자 확률을 갖는 단순 유전자 알고리즘과 Srinivas[³]가 제안한 알고리즘과 비교하였다. 실험결과는 본 논문에서 제안한 알고리즘이 다른 방법보다 상당히 우수함을 보였다. 이전의 방법과 비교해 볼 때 제안한 알고리즘은 계산량이 적고 연산자 확률을 진화시키기 위한 새로운 연산없이 상호 진화하며 진화를 위한 새로운 파라메터가 필요없는 등의 3가지 장점을 갖고 있다.

  • PDF