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Aabstract

Adaptation of operator probabilitics is one of the most important and promising issues in
evolutionary computation arcas. This is because the selling of appropriate probabilities is not only
very tedious and difficult but very important to the performance improvement of genctic algorithms,
Many researchers have introduced their algorithms for setting or adapting operator probabilities.
Experimental results in most previous works, however, have not been satisfiable. Moreover, Tuson
have insisted that “the adaptation is not neccssarily a good thing” in his papers"l' Y In this paper,
we propose a self-tuning scheme for adapting operator probabilities in genetic algorithms. Our
scheme was exiensively tested on four function optimization problems and one combinational
problem; and compared to simple genetic algorithms with constant probabilities and adaptive genetic
algorithm proposed by Srinivas et al® Experimental results showed that our scheme was superior
to the others. Our scheme compared with previous works has three advantages: less computational
efforts, co-evolution without additional operations for evolution of probabilities, and no need of
additional parameters.
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I. Introduction

Genetic  algorithms(GAs), robust and systematic
have Tbeen

applied to many scientific and engincering problems
13~

optimization paradigms, successfully

. The performances of the GAs are considerably

probabi]itiesu‘z’m'"16'.

dependent upon the aperator
Finding appropriate operator probabilities is  quite
hard and time-consuming task because these vary
with the problem heing considered and the encoding

L1 Many researchers have

and reproduction methods
tried to automate  thos
algoﬁﬂnnsn’g’wmw]. Tuson™  classified
dlgorithms into two groups: co-evolutionary methods
methods. More  detailed
classification was recently proposed by Hinterding ef
a™  mM o the classified
algorithms  inlo  two orthogonal  dimensions,
adaptation type and adaptation level. Although some

previous works have shown litlle improvement of
e_[3,15,16]

process  with  several

adaptation

and  leaming-nile

authors adaptation

Le

performanc , some works have shown nol good
results 2 (more detailed discussions are available in
section II. Tuson et a.”” have cven addressed that
“operator adaptation is not necessarily a good thing”
in his final discussions. Moreover, most previous
methods have (wo difficulties: they need empirical
setting of additional parameters i spite that such
parameters are sensitive to performances; and they
need empirical setting of initlal probahilities of
individuals that affects performances. These make
those methods diffictdt to apply because such
parameters must be also oplimized.

In this paper, we propose a self-tuning scheme for
adapting operator probabiliies. The characteristics of
our approach is summarized ast randomly assigned
initial operator probabiliies, co—evolulion of operator
probabilities  with normal  evolution of solutions
additional additional

parameters for evolution of operator probabilities. In

without operations  and

our scheme, only two additional computations —

a2 dae]Felal daka &g 2424

G E)

calculation of
operator probabilities in reproduction operation — are

new fithess and manipulation of

necessary. Finally, our scheme is a simple and
robust method without much computational efforts
and additional parameters.

With four function optimization problems and one
combinational problem, we extensivcly experimented
with our scheme, an adaplive genetic algorithm
(AGA) proposed by Srimvas et oV and simple
algorithms(SGA)  with

probabilities[4]. Experimental results showed that our

genetic constant  operator
scheme was superior to the others and very robust
in spite of its simplicity. This paper is organized as
follows. In section II, previous works related to this
topic are introduced briefly. Section T describes the
self-tuning
experimental results and discussions are provided in

operations  of  proposed scheme. The

section IV, This paper concludes in section V.

O. Previous works

The adaptation of operator probabilities in GAs
have been studied by many researchers with several
algorithms™** ¥ The objectives of adaptation of
operator probabilities are surmmarized ast reducing
the amount of time that is spent finding suitable
the quality of
solutions obtained, and allowing the GA to find a

operator probahilities,  increasing
solution of a given quality more quickly. This
of

adaptation

section described previous works In terms

02 assified

classification. Tuson
algorithms into two groups: co—evolutionary methods,
that encode operator probabilities into each member
of the population; and leamning-nule methods, that
adapt the probabilitics based on measurement of the
8 More detailed classification

for adaptation of any paramelers not to restrict to

operator productivitics

operator probabilities in evolutionary computation was
recently proposed by Hinterding et a™® Inm, the
authors  classified adaptation algorithms into two

orthogonal dimensions, iLe., adaptaton type and
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The adaptation type dimension
static

adaptation level,

consists of two main categories: (off-line
adaptation) and dynamic (online adaptatiory), with the
latter one divided further into deterministic, adaptive,
and self- adaptive[m. The adaptation level dimension
consists of four categorics' environment, population,
individual, and
adaptation, the environment such as the penalties in
the fitness function,
function, and the ftress of an individual is changed.
We  introduced

scheme in the paper

component. In  environment level

welghts  within  the fitness

an  chvironment-level  adaptation

" This scheme tock not only
the original fitness, but also its improved fitness not
to fal into a promatre convergence phenomenon.
TPopulation level adaptation is to apply the changed
parameter 1o all members of the population. On the
other hands, the individual level adaption affects only
each individual of the population. Component level
local
component or gene of ann individual in the population.

adaptation  adjusls parameters to  some

In this paper, we focus on the adaptation of
operator probabilities. Static methods are to give
obtained to the GA.
Unlike the static methods, dynamic adapting methods

static operator probabiliies

adaptively change the initial probabilities curing the
GA mun. The deterministic methods are to change
the probabilities by only deterministic rules without
any informations of the GA such as fitness'”. For

[16]

example, a deterministic equation for mutation

probability can be used as:

ﬁ,,1=0.1—0.09><—%

where g is the generation number, where (0=g=<G
and p,, is the mutation probahility varied from 0.1
to 00l In methods,  the

algorithms use some mnformations of feedback from
[14] 121

adaptive adaptation

the GA such as ftness . Tuson nvestigated a
COBRA(Cost  Operalor-Based Rate  Adaptation)
algorithm that adjusted the probabiliies based on
measurement of operator productivities —the average

improvement in fimess from parents to offsprings.
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The algorithm is as follows. Given £ operators,

0y, 05 let b:t) be the beneft (in other words,
operator productivities), ¢.(#) be the cost, and p;(¢)
be the probability of ith operator. Then the COBRA
consists of the following steps.
1. The user decides a set of fixed probabilities #;.
2. After (G evaluations

probahility readjustrments), rank the operalors

{the gap of operator

according their values of &,/¢;, and assign the
opcrators  their new probabilities according to
their rank (le. the highest probability to the
operator with the highest value of 2/c,).
3. Repeat step 2 every (& evalualions.
Srinivas et ol have introduced another adaptive
method. Since the performance of owr method is
compared with that of this method in section IV, we
will describe their adaptation method in detail in
section IV.
In self-adaptive methods, the operator probabilities
encoded into each member of the
population, allowing them to ‘co-evolve with the

are  directly

solutions.

Ho et @™ introduced a component-level adaptive
algorithm, They used three operator probabilities on
of

probahilities are updated using some rules with a

three  groups population.  These  operator
predefined step size S, According to the average

fitness of the three groups, the three operator
probabilities are readjusted with the step size S. This
algorithm can be applied to adapting the nutation
probabilily and crossover probability by runming two
modules individually. More detailed descriptions arc
available in™®,

Some previous methods that Tuson“‘ﬂ investigated
did not show good results. M from his
experiments insisted that “operator adaptation is not
good thing”.

methods have some difficulties in application. First,

Tuson

necessarily a Moreover, previous
most methods have several additional parameters,
which

must be set by empirical tuning or adapted using

affects the performance. These parameters
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adaptation In self-adaptive

methods, for example, the operator probabilities are

another algorithm.
encoded and evolved using a co-avolution crossover
and mutation with their probabilitiesm. The encoding
probabilities make GAs

complicated and increase ihe number of addifional

and co—evolution  of
paramieters. As another example, the gap G in the
COBRA algoriihm[z] and the step size S ™ must
be carefully selected by a user. In“r’-l, the variable #
and # (decreasing [ractions of the credit for parents
and ¢ ratio  of

and  grandparents) (reassigned

probabilities) are additional parameters.
methods additional

informations such as the encoded probabilities in

operator
Second, most need many
self-adaptive methods and the benefit and cost
in the COBRA
algorittim.  Third, the initial probabilities In most

values during & generalions
methods  are empirically given by user selection.
"™ the initial probabilities are determined as
R,=(R;+Ryp/2, where R;is the initial probabilities
and R; and R, are the lower and upper bounds
that must be given by user selection, respectively.
The user must decide a set of fixed probabilities in
the COBRA algorithm. In'"®, the initial probabilities
of four operators are set to a constant value by user
selection (0.2 in his experiments). Although the initial
probabilities are adaplively changed during a GA. run,
the imitial probabilities affects the performances of

¥ From these perspoctives,

algorithms considerably[
it is not sure that the previous methods are usefil to

do adaptation of operator probabilities.

M. Self-tuning of Operator
Probabilities

This section describes proposed self-tuning scheme
of operator probabilities, which can be classified inlo
an individual-level, adaptation method The major
ideas of our self-tuning scheme can be described as
follows.

Initial operalor probabilities arc set to not a

FAA GaeFAA A 4
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constant value but uniformly distributed random
values within predefined minimum and maximum
lirmits. Therefore, no the other sciting algorithms
or empirical tuning arc necessary for inital
probahilities. The operator probabilities at each
individual are co—evolved through the normal
operations of GAs without additional co-evolving

operations.

» The selection operation of GAs must select
individuals with good probabilities as well as
individuals with good fitness. To do this, the
evaluation operation must consider not only how
much the individuals are fit into the goal, hut
also how much the probabiliies of the individuals
are adequate. Tor the latter case, our evaluation
operation uses the information how much the
fitness of an offspring is improved from that of
parents (we call this ftness improved fitness).
This individuals  with  good
probabilitics will be evolved beller than those
with had probabilities. By these selection and
evaluation, the GAs with our scheme evalve not
only solutions but the probabilities.

« Reproduction operations are the same as the SGA

13 hecause

except for manipulating of operator probahilities.

In what follows, we will refer to the GA with the
self-tuning  method self-tuning  genetic
algorithm (STGA) against the SGA proposed by
Goldberg® Tn the STGA, initial crossover and
mutation probabilities of 7th individual are randomly

as a

sel as:

L
(2

f),»i= TCZ?’ZCZ( xmnp;nax]jc),im 1,"'VN
pmiz rand( mmpn‘:wcpm); i=1,~ N
N the number

rand( + , +) generates uniformly distributed random
values within predefined lmits,

where the is of individuals;

minﬁ( Emd muxpm fOl‘

crossover probabilities, M. and  ™p, for

mutation probahiliies; and the p.” and 5, are the

initial crossover and mutation probabilities of ith
individual, respectively. In the papers! *®%12718 e

authors mentioned that GAs works successfully at
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moderately large values of crossover probability p.
and small values of mutation probability 2,,. It has
been well known that too small values of crossover
probabilily prevented a GA from exploration of new
soluions in search space and loo large values of
crossover probability disrupted the solutions faster
than selection can exploit them Tt has been also
known that too large values of mulation probability
made a GA act as a random search algorithm and
too small values of mulation probability prevented a
GA from getting out of a local optimum. In our

max min

experiments, the p. and p. are set to 0.8 and

max

05 respectively; and the pm and  "Tp, to 02
and 0.001 respectively.

For the selection of individuals with good operator
probabilities as well as the individuals with good
fitness, we introduce new fitness for employing the
improved fitness in the evaluation operation. For
definition of the new fitness and improved fitness,
we first define parents fitness as follows.

Definition 1: Parents fitness

let two offsprings o; and o, be generated from
the two parents p, and .. then the parents fitness

7 and f%, of the two offsprings are defimed as:

P =Fo=(fp+/m)/2.0 if do crossover (3

Po=FonFo =1, otherwise

where f, and 7, are the original fitness of the
two parents, respectively,

With this parents fitness, the Improved fitness is
delined.

Defimiion 2: Improved Ainess

Let the fitness of [th individual be /£ and its
parerits ftness be /7, then the improved fitness #

of the individual is given as:
i 1‘ =f ! ‘—ff (4)

With the mmproved fitness, the new fitness used in

selection operation of our scheme is defined as

EF TRAmwE
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follows.

Deflinition 3: New [itness

Let the f, 7, and 7 be defined the same as

definition 2, then the new ftness 77 of ith
individual is defined as:
fHfE A Fi0
fi= (5)

178 otherwise

where S is the population size.

From the definition 3, some individuals whose
improved fitness is greater than zero will survive in
proportion to the sum of its fitness and the improved
fitness. On the other hands, the others will be

difficult to survive. We used 1/S instead of the £
as new fiiness for the case f;=0 hecause it was
revealed from experiments that using 1/S showed
better performance than using f:. Also, using £, f;
for the case f,>0 showed better performance than
using only /;. From these results, we can conclude
that the improved fitness in our scheme plays a
more important role to evolution than the fitness. It
was also observed from experiments that our scheme
showed Dbetter performance as the new fitness for
the case f,=0 as small. However, we used not zero
but 1/S for preventing the sum of new fitness from
being zero when no individuals are improvecl] ‘When
no individuals are improved, all individuals in our
scheme will have same probability to be selected
These fitness definitions are sornewhat similar to our
previous paper[m. In the paper, however, the
mproved filness 1s used for only preventing a GA
from falling the premature convergence phenomenon
considering of operator
As definitions

dlgorithms of the paper are considerably different

evolution
the

without

probabilities, a result and
[rom those of this paper.
Algorithm 1 shows the oversll structure of our

scheme based on the previous descriptions.

Algorithm 1 Proposed Adaptation Algorithm
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/ot time //

// P populations //

// N : the number of individuals //

ATTiS NN
fitness, and new fitness of ith individual //

// p1p2.€1.69

fitness, parents fitness, improved

two parents and generaled two
offsprings //

/DD
th individual //

// vand(min, max)  random float number generation

! crossover and mutation probabilities of 1

within min and max limits //

/™ p, ™ p, lower and upper lmils of
crossover probability //
/M, " lower and upper limits of
mutation probability //
1 ¢t<0

2. initialize P(#)
f the sum of new fitness hecomes to zero, then

the roulette wheel selection does not operate properly.

3. for i(=1to N

4. set imitial crossover probability »h  to
rand( ™ p,, " be)

5. get initial mutation probabiity pL to
rand( ™ pp, ™ P

6.  end for

7. evaluate P(1)

8. set £, using the fitness function

9. set f? to zero

10. I £>f then

11. set P to A+ /S— =2

12.  else

13, set ffto 1/5

14 end of

15. While (not termination-condition)

16. do

17, t=t+1

18.  select P(#) from P(z—1)

19, recomrbine A(£)

20. for /=1 to N with slep 2

21 set ith and i+ 1th individuals (0 p, and ps

2. set pe=(p 1 +p2)/2

23. decide whether do crossover or not with
crossover probability »,

24. if do crossover then

2. sel pl=pS=p,

2. Set by == (pa + 22012

21. set fl,=Fo={(f4+Fs)I2

28, else

29. set p.'=pl and pt=pl

30. Set pa=pa and = pr

3L set  Fo=F, and Fo=F,

32 end if

33. do mutation offsprings ¢ and ¢ with
bu=1py and p,=p, respectively

A end for

3. evaluate P(8)

36. set f; using the fitness function

37. If f, >#! then

3. set f}to fit fi=fit fi— F!

39. else

40, set fi to 1/S

41, end if

42. end

The initial operator probabilifes are randomly

assigned by uniformly distributed random number
generator within  two  limits. By doing randomly
assignment of initial probabiliies, it is not nccessary
that the selection of constant initial probabilities for
crossover and mutation. This is an advantage of our
scheme. Initially, the parents fitness of all individuals
is set to zero hbecause the individuals have no
parents. As a result,

individuals with £ >0 is set to 27, and the new

the new fitness of 4l

fitness of the others with £=0 to 1/§ initially. In
recombination operation (in other words, reproduction

operation), the crossover probabiliies of two parents
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selected is averaged for deciding a crossover
probabjlity. With this crossover probability, it is
decided whether the crossover operation do or not. If
do

mutation

crossover, then the crossover probabilities,
probabilities, fitness  of
offsprings are calculated by averaging those of two

and parents

parents. Otherwise, such values are set to those of
parents. With the decided mutation probability by
above processing, two offsprings are mutated In the
evaluation, #; is obtained by the ftness function and
i set to  fiHfi—f1 A £f /s
otherwise. Our scheme can be regarded as a
combination method of GAs and gradient based

search.

18 aor to

The main advantages of our work compared to the
previous works are swmmarized as follows. First,
although our scheme co-evolve, it does not necd
more  additional informations such as  cncoded
probapilities and update rules for the probability part
thal are necessary 1in  previous co—evolutionary
algorithms. Second, our scheme does not use any
additional the

probabilities.  Third, while most previous methods

operations 1o evolve operator
need addifional parameters that must be ermpincally
set by a user in spite that the performances are
sensitive to those, our scheme does not need any
additional parameters. Fourth, the initial probabilities
of individuals in our scheme are sel lo uniformly
distributed random values within predefined limits
while in the other schemes a user must select
constant probabilities thal affects the performances.
Finally, it can be viewed that our scheme is a
method  without

computational efforts and additional parameters that a

simple  and  robust much

user must set.

[V. Experimental Results and
Discussion

Our tested function

optimization problems and one combinational problem.

schame  was o four

(255)

The four functions were chosen to cover the wide
Lypes of possible functions as follows.

where —6=x<10
Gav=1x- sgn(x), where —4<x<10
Gyy=10x - sgn(x)(sin(102x) + D sin(m) + 1)

. 2
Gry=x",

®)
;where — 10 =x<20
Gyy=10x- (sin(me) + Dexp

(x - sgn(x)/2), where —15<x<10

The v values are used as fitness values in
experiments.

A combinational problem G&; was employed in
order to measure the performances in combinational
optimization. The &; problem is a type of pattern
matching problems as depicted in Figure 2(h). A hit
pattern. whose lenglh is the same as the individual
length is randomly generated and GA finds the
pattern. The hit pattem generated is different for
each nm and the probability of occurring 1 and 0 is
05 The fitness value of [th individual 7; in the
population pool 1s calculated using following fitmess
function.

- g (L5 T2
where h is the munber of bit, /7 is the fitness
value of jth bit, 79 is jth bit in the given bil
pattern, and 7% is the jth bit of ith individual
Therelore, the optinum fitness value is A

Figure 1 and 2 (a) show the x-y plots of the four
functions and the fitness of the pattern matching
problem when the given bit pattern is represented by
16 hits
respectively.

and all bits of the pattern are zero,

Functions G, and G, are relatively simple

unimedal functions. While functions &, and Gy are
quite complex multimodal functions with many local
maxima. Function G, and the pattern matching
problem cannot be optimized hy means of any
conventiondl gradient techniques since there is no
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gradient information available.
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The
measwed and compared to those of SGA  with

performances of our scheme have heen

constant  values of operator  probabilities.  For

adaptive  algarithm, the
AGA® was also iroplemented and tested. The main
idea of their method is that the opcrator probabilities

comparison  of  previous

must be adjusted by considering the fitness of each
individual. In their method, the operator probabilities

are adaptively adjusted al individual level by
following equations.
={/a(fm;m—f’)/(f,.m—?), f=f @)
Ry =7
={fez(fmx—f’)/(fm—?), fz7 ©
Ay, Ff

where /o and f are the maximum fitness and
averaged fitness at a generation, f is the fimess of
an individual, and f is the large value of fitmess
two First, we consider the

values of parents.
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meaning of the cquation 8 and 9 in the case of
f=fo fz7 The numerator term in such cascs
is to give more chances 10 be cvolved to the
individuals with low fitness and not to give chances
to he destroyed to the individuals with best fitness.
That the hest 7= f e
F=fmx are not destroyed by crossover and

mutation since the p. and p, become to zero. On

is, mdividuals  with or

the other hands, the more the F or f decrease, the
the probabilities The
denominator term Is not to get stuck at a local
not to fal

more operator increase,

oplimum  (in  other words, info a
premature convergence phenomenon). If a GA gets
stuck at a local optimum, the operator probabilitics
will increase because the [ or 7 will be close to the
Frme. This helps a GA escape from the local
optimum. I[ f or 7 eguals o the 7 then the p,
and p,, become 1o one. For bounding the maximum
values of p, and p,, #; and k&, that must be set
by a user are employed.

In the case of 7 <7 or /<7 next, the p. and
by are sel o the constant values %, and Ay,
respectively. This Is to give same chances to be
evolved to the individuals with less fitness than 7
They set k£ and A to 1.0, and 4 and &, to 05
for their experiments. The authors compared their
method to the SGA  with

probabilities, Le, p.=0.66 and #,=0.008. Although

only one operalor

their method have shown little improvement of
performance than the SGA with the constant
operator probabilities, it is not sure that their method
is adequate for adaptation of operator probabilities.
This iz because the performance of SGA is very
dependent on constant operator probabilities  as
shown in our experiments. It was revealed from our
that their method showed
performance than the SGA with some constant
probabilities as shown in Table O, V, and VI To

make matters worse, it was found that their ecquation

experiments Door

8 and 9 have a fatal problem in the case that the

S+
(210

(257)

[¥%)
3
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value of fuw 1S equal to /. Thus, we modified the
cquation 8 and 9 for our experiments as p.= k& and
Dm="ky, Where fon = 7. In the case of fou* 7 the
criginal equations was used. This modification does
not greally affect the performance of the AGA
because the possibility this situation occurs is not
ruch.

Except the adaptive scheme, all other parameters
—initial individuals, the population size, and the
length of hit strings —are same in experiments.
Since the performances of GAs are dependent on the
initial incividuals” ™", the performance of each
cxperiment is measured by average values of 30
runs. To measure the performances according to
change of population size and the length of hit

strings, we set the parameters as shown in Table 1.

z I elme F4) debefe

Table [.Parameters for Test Problems.
Experiments | population size | The length of bit strings

Exp. 21 0 16

Exp 2 100 20

Exp. #3 200 24

The performances of SGA with constant operator
probabilities are measwred under the combinations of
four crossover probabilities and fowr rmutation

probabilities, Le. sixteen combinations of constant
operator probabilies, Table I shows the selected

crossover and mulation probahilities.

= ARG mufs) Eodwe] &5
Table [l.Selected Crossover and Mutation
Probabilities.
o 05 06 7 08
e | 0001 | 0005 | ool | o2

The performances in each experiment are rmcasured
let the g, be the first
gencration number where the GA finds the optimum

solution at the rth run, then the performance indexes

with three measures.

are defined as follows.



38 R A

1) I : the averaged value of g, for 30 rung, ie,
I= anlg”/ 30.

2) o, . the standard deviation of g, for 30 nums,

Le, o=V (g,—D*20.
3 D:
optimum  for 30 runs. To measure this index,

the number of getting stuck at a local

we set the meximum number of generations to
50,000.

The first measure ] addresses the searching or
optimizing ability of a GA and the second measure
or indicates the robustness against the changing of
initial individuals. The possibility that a GA gets
stuck at a local optimum is measured by third index.
Table M shows the experimental results of four
function optimization problems and the patlem
matching problem in Exp. #1. As already described
ahove, the performances of S5GA was measured
under sixteen combinations of operator probabilities.

B E)

produce the best performance. In STGA and AGA,
the values of operator probahbilities for one run were
measured only at the final generation by averaging
the values of operator probabilities of each individual
(we  call probabilities operator
probabilities). In Table I, the #. and », in STGA
and AGA indicate the averaged values of final
operator probabilitics for 30 run. In order to show

these final

the performances of the SGA accarding to the
operator probabilities, we select the two problems Gy
and Gs as typicel problems of function optimization
and combinational optimization, respectively. Table IV
shows the performances of the SGA under sixteen

operator probabilities.

V. AR #1d4 I G G SGA
Ay 23}

Table IV. Experimantal Results in SGA for G4

and G5 in Exp. #1.

EH

For simplicity, only the best result of SGA (denoted [Problem index | pr\p:| 05 0.6 0.7 0.8
as SGA") was presented in Table @M. In SGA" the 0001 | 24215 26200.0| 33979.8( 36553.10
po and p, Tepresent the operator probabiliies that 7 005 4390 7787 6073 3450
001 1297|4973, 5213|5823
LA 16 e 02 12540| 12777 11493| 12447
= A #1elA ¥ 24
Table Il Experimantal Raes UES n Exp. #1 0001 | 217056| 227390 | 228450| 21377.2
: i G 005 4108 9772|645 8
Problem | Method| T o | D| p | pm “ % oo a8 03| :2| s00
STGA| 1180| 28| 0 |0651]0.0% 02 9555| 10610 13813] 11032
Gi | AGA | 167.00| 19247 | 0 |0.048|0.072 0.001 19 12 20 21
SGA" | 9403| 7537 | 0 |0800]0.050 p 06 0 0 0 0
STGA | 34703 | 37762] 0 |0643]0.101 831 8 8 8 8
Ga: | AGA | 371440 | 348343 | 0 (0330|0262 '
son T 23011 239 0 10600 0050 0001 | 5927| 4813 5390| 4530
2! : : e [ oo 6577| 90, 4527 4557
STGA| 4373| 5123] 0 (0655|0083 0.01 12823| 12413 9807 12253
Gs | AGA | 43293] 33035| 0 |0.118]0.100 02 43057| 41620| 49897| 53260
SGA" | 6200 5601| 0 |0.700/0.100 0001 | 6361 6L08] 5396 4300
, STGA 1827 1884 0 064710084 Gs o 0.05 4240 31.3% B57 4451
G | AGA | 17547| 15261 ] 0 |0098]0.084 001 | 9BOB| 1556|  7a22) 10406
= 0.2 36112| B38| 5687 36770
SGA 3450 33841 0 [0800(0.090 L 0 0 0 3
STGA 7.30 1721 0 1065110.093 '
o |0 0 0 0 0
Gs AGA | 46537| 40355| 0 |0479]|0.320 0.01 0 0 0 0
SGA' | 4627| 2557 0 |0.700]0.050 02 0 0 0 0
(258)
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As shown in Table -V,
STGA are superior to those of AGA and mostly
better than those of the SGA". In the case of only
G, In Exp. #1 and Exp. #2, the STGA shows a litile

the performances of

worse performance than the SGA™ This is causcd
that the G, has no gradient informations available
that the STGA uses as described in seclion IIL
From the experimental results, we observed thal the
STGA is more effective in case of the problems thal
the STGA
considerably better performance than the others.
Especially in the case of G in Exp. #3, the STGA
was fast about 110 times than the AGA and about
170 times than the SGA'. As the populaton size
the length of bit the
performances of STGA except for the case of G,

have gradient informations. shows

and strings  increase,
problem are more and more better than the others.
This indicates that the STGA is more effective in

the cases of more complicate parameters. From the

iT
vl

V. AE #2el|xe] il

Tahle V. Experimantal Results in SGA. for G4
and G5 in Exp. #1.

Problem|Method| 1 ol D | pc | pm
STGA | 1647 509 0 |0651 (0092

Gi1 | AGA | 90530| 103320| 0 |0.027 |0.030
SGA' | 63567 52468 0 |0.700 (0.080
STGA | 1571.57| 162582| 0 |0.643|0.094

G2 | AGA |1806657|15192.36| 0 |0.286 |0.222
SGA" | 130487| 172857| 0 |0.700 [0.050
STGA | 4393| 21.06| 0 |065110.083

Gs | AGA | 114600| 107554] 0 |0.097 [0.033
SGA™ | 127100 9697 0 |0.700 |0.050
STGA | 1733) 1073| 0 |0650 |0.087

Ga | AGA | 29747 28235 0 |0.041 0.041
SGA™ | 9%87| 6719 0 |0.800|0.050
STGA 897 154 0 |0.64810.097

Gs | AGA | 323263| 244569 0 (0484 |0.32%
SGA' 2040 15767 O ]0.800 |0.001

(259)

£34& Clim £#5%

39

or performance index, we can know that the STGA

18

more

rohust

against

changing the

Individuals than the others in most problems.

ir

Vi, A9

49 2%
Table VI. Experimantal Results in SGA far (4
and Gs in Exp. #2.

#2A4 I 9

G54

inftial

S5GA

Problem |index | pa\pe| 05 06 0.7 0.8
0.001 | 20754.23| 3245523 31634.50 | 27287.17
| 005 | 1750 10000 1200 9687
001 | 19213 23133 12000 2173
02 | eno07| 7er43| wmiT| T
0.001 | 2249121 | 2262460 | 2278520 | 23836.18

. 005 | 891 s79%| 7416|6719
ol om0 | oam0| 95045 11991] 12238
02 | 59239| 67238 414 =206
0.001 15 17 18 15

o 0% 0 0 0
001 0 0 0 0
02 0 0 0 0
0001 | 40m| 0| |a3| 2940

| oo | 1s600] zam| 12783 1298
001 | 357 79117| 2L 82130
02 | 368337| F01490| 2675.70| 257593
0001 | 2580| 1421] 54| 157
005 | 12353 1693| 10659 10692
Gs | 90 oo | 1111 7eass| e17ss| 7a2es
02 | 204479| 480373| 216779 3B
0.001 0 0 0 0
005 0 0 0 0
D oa 0 0 0 0
02 0 0 0 0

Operaier Frobabitias of STGA on Ga in Exp #3
il S B

Operatar Probablibes
o
@

o
Y
T

P |

——

a8

10 12

Generations

(a)
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OQperator Probabllitics of STGA on GG in Exp #3
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Fig. 3. Operator probabilities of STGA in Exp. #3

6000

5000

4000 |

Mew Fithass

2000

1000

4000

3500

3000

2500

2000

Finsss

1500 [

100Q

500 |-

(&) Gy (b) Gs.

New Fitness of STGA on G4 1n Exp #2

3000

: T T T
T j " j new fitness + = -+

(&)

Tess |+

|
\
|
‘
1
!
{
!

.
-

PRy
|
]
[
|

|
|
|
{

| \
[
i
\ |
8 10 12 14 16 1%
@Generatlons

(b)

a4 A¥ #3 6,44 STGAY A= ¢ A A

Age

= (@) A AEE B

Fig. 4. Fitness and New Fitness of STGA on G,

i Exp. #3 (a) New Fitness (b) Fitness.

SRR
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Crossover Prababilily of AGA on G4 1n Exp #3

Q8

o
o

Crossaver Procabiily
o
2

T T T
j j CILIEOVET prebabity —= -

-
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Nutatlon Probability of AGA on G4 n Exp #3

" mulation probatlity 1+

Mlalicn Frobatility

: L L : . .
0 50 100 150 200 250 300 350 450
Ceneratons

Fig. 6. A8 # G4 AGAS 443l &E (a)
] (b) Sdie]

Fig. 6. Operator probabilities of AGA on Gy in
Exp. #3 (a) Crossover (b) Mutation.

Crossover Probabillty of AGA on G5 in Exp #3
T
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Fig. 7. Operator probabilities of AGA on G; In

Exp. #3 (a) Crossover (b) Mutation.
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) = P
£37%& Cim $5% 41
Fitnesn of AGA pn G4 1n Exp #3
4000 T
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& anop
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Fitness of AGA on G510 Exp #3
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Fig. 8. Fitness of AGA in Exp. #3 (a) G, (b) Gs.

= VI Ay #3041 2] AgAx)
Table Vll. Experimantal Results in Exp. #3.
Problern | Method I ol D|oc | nm
STGA| 2027 313| 0 |0.647/0.089
G AGA | 228247| 183317 0 |0.037) 0042
SGA" | 3B11.73| 357865 0 | 0.800]0.001
STGA [10719.50(1087844| 0 | 0652| 0.088
(72 AGA |42902.73|14737.31| 0 |0.162| 0139
SGA" 1213600 9977.11| 0 |0.600]0.050
STGA| 2933| 3298| 0 |0647|00%
Gs AGA | 3385.60| 400755 O |0.034]0.040
SGA” | 40897 38227| 0 |0500|0.030
STGA 17.73 537| 0 |0.652|0082
G AGA | 926001 67141 0 |0.016]|0019
SGA™ | 30163| 34484| 0 |0600]0030
STGA 9.20 119 0 |0652|0.09%6
Gs AGA |12558.00(11623.40| 0 |0493|0.326
SGA” 2793 1039 0 |0.700| 0.00]1
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= Vil AE #3444 G 69 SGA
Ay 437
Table V. Experimantal Results in SGA for G4
and G's in Exp. #3.

Problem | index | pm\p:| 05 0.6 0.7 0.8
0.001 |24789.93| 18689.17| 27071.17 | 20844.07
0.06 35493 30L63| 34440 331.37
! 0.01 979.37| 942.30| 1126.17| 77363
0.2 504360 672487 4560.00| 7434.87
0.001 | 2392051 | 22566.07| 24515.80 | 23856.13
005 33018 24484| 29713 269.20
G o1 0.01 108014 754.67| 97439 67933
02 TAR0.32| 633818| 4750.72| T796.72
0.001 14 10 16 12
005 0 0 0
D
0.01 0 0 0
0.2 0 0 0 0
0.001 3467 3790 35.43 29.40
005 67773 22463 12763 15293
! 0.01 634230 791.17| 72123 821.30
0.2 1875250| 5014.90| 2675.70| 257593
0.001 12,74 785 10.38 751
0.05 08834 340.17| 84838 38993
Gs | 97 oo | sam10, 359! 4zm0ds| s7I088
0.2 1352316 13794.38| 17600.19| 17169.94
0.001 0 0 0 0
0.05 0 0 0 0
D 0.01 0 0 0 0
0.2 3 1 4 3
With the problems G, and Gs in Exp #3, we

observed the operator probabiliies and [itness for
one nun. Figure 3 shows the minimum, maximum,
and average values of crossover probability and
mutation probability of STGA on G, and G; In
Exp. #3. In a generation, the upper bar and lower
bar indicate the maximum and minimum  values

respectively and the mark represents the average

value. As shown in Figure 3, the operator
probabilities of individuals settle down to constant
values n a few generadons. During these

generations, the STGA select individuals with good
operator probabilities based on the values of new
fitness. Figure 4 and 5 show the new fitness and

A% Tz AR FF AgaA

(262)

fitness of STGA on Gy and G5 in Exp. 43
respectively. As shown in the figures, the average
value of fitness for the most generations increase as
the generadons increase. In AGA, however, the
operator probabilities are greatly varied from zero to
one in case of crossover probability and from zero to
05 in case of mutation probahility as shown in
Figurc 6 and 7. Moreover, the average values of
fitness arc greatly changed Note that the operator
probabilities and the fitness of Gy (see Fgure 7 nd
Figure 8 (b) are closely related. In the generation
near by 2910, the average values of crossover and
mutation probahilities are nearly zero. This indicates
that the AGA falls into a local optimum, but all
individuals are not same. In this case it is verv
difficult that the AGA gets out of the local optimurn
because most operator probabilities are nearly zero.
After a few generations, all individuals become same.
In this case, the crossover probabilities and the
mutation probabilites of all individuals hecome to
one and to (.5, respectively. Since this makes all
individuals of AGA disrupt, the average value of
fitness rapidly decrcases. From the viewpoint of
average fitness, the average value of fitness when
this occur is the nearly same as the first generation
(see near by 110 generations in Figurc 8 (a)). This
that the AGA destroys all
informations found to escape the local optimmm when
the AGA falls into a local opfimum From these
facts, we can conclude that the AGA is very difficult
to escape the local optimum and pays a lot of cost
to get out of the local optimum This makes the
performances of AGA poor.

represents nearly

V. Conclusion

This paper proposed a self-tuning scheme for
adapting operator probahilities in genetic algorithms.
In the proposed scheme, we assigned uniformly
distributed random values within two limits to the
opcrator probabilities of individuals and modified the
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evaluation operation for evolving the operator
probabilities as well as the solutions. By taking not
only original fitness but also improved fitness in the
evaluation operation, the operator probabilities as well
as the solutions were co-evolved From this, our
scherme can be regarded as a combination method of
GAs and gradient based search. With four function
optimization problems and one combinational problem,
we extensively experimented with the proposed
scheme, an adaptive genetic algorithm (AGA™ and
(8GA)
operator probabilities. Although the proposed scheme

simple  genetic  algorithms with constant
did not have any additional operations and any

additional parameters for evolution of operator
probabilities, it

experiments that the proposed scheme was superior

was observed from extensive
to the others and was very effective and useful
especially in the problems with gradient informations
available. The AGA method showed relatively poor
the
ineffective 1o get out of the local optimum. As future

performances  because method was very
works, we wil experiment with more complicated
problems and will apply this scheme to the genetic
algorithms with the other reproduction operators and
to the other genetic algorithms such as steady state

genetic algorithms.
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